N-cofilin is associated with neuronal migration disorders and cell cycle control in the cerebral cortex
- PMID: 17875668
- PMCID: PMC1973148
- DOI: 10.1101/gad.434307
N-cofilin is associated with neuronal migration disorders and cell cycle control in the cerebral cortex
Abstract
Many neuronal disorders such as lissencephaly, epilepsy, and schizophrenia are caused by the abnormal migration of neurons in the developing brain. The role of the actin cytoskeleton in neuronal migration disorders has in large part remained elusive. Here we show that the F-actin depolymerizing factor n-cofilin controls cell migration and cell cycle progression in the cerebral cortex. Loss of n-cofilin impairs radial migration, resulting in the lack of intermediate cortical layers. Neuronal progenitors in the ventricular zone show increased cell cycle exit and exaggerated neuronal differentiation, leading to the depletion of the neuronal progenitor pool. These results demonstrate that mutations affecting regulators of the actin cytoskeleton contribute to the pathology of cortex development.
Figures





Similar articles
-
Src controls neuronal migration by regulating the activity of FAK and cofilin.Neuroscience. 2015 Apr 30;292:90-100. doi: 10.1016/j.neuroscience.2015.02.025. Epub 2015 Feb 21. Neuroscience. 2015. PMID: 25711940
-
Attention-Deficit/Hyperactivity Disorder-like Phenotype in a Mouse Model with Impaired Actin Dynamics.Biol Psychiatry. 2015 Jul 15;78(2):95-106. doi: 10.1016/j.biopsych.2014.03.011. Epub 2014 Mar 21. Biol Psychiatry. 2015. PMID: 24768258
-
The actin depolymerizing factor n-cofilin is essential for neural tube morphogenesis and neural crest cell migration.Dev Biol. 2005 Feb 1;278(1):231-41. doi: 10.1016/j.ydbio.2004.11.010. Dev Biol. 2005. PMID: 15649475
-
Genetic mechanisms underlying abnormal neuronal migration in classical lissencephaly.Trends Genet. 2007 Dec;23(12):623-30. doi: 10.1016/j.tig.2007.09.003. Epub 2007 Nov 8. Trends Genet. 2007. PMID: 17997185 Review.
-
Normal and abnormal neuronal migration in the developing cerebral cortex.J Med Invest. 2002 Aug;49(3-4):97-110. J Med Invest. 2002. PMID: 12323012 Review.
Cited by
-
Elongator controls cortical interneuron migration by regulating actomyosin dynamics.Cell Res. 2016 Oct;26(10):1131-1148. doi: 10.1038/cr.2016.112. Epub 2016 Sep 27. Cell Res. 2016. PMID: 27670698 Free PMC article.
-
ADF/Cofilin-Mediated Actin Turnover Promotes Axon Regeneration in the Adult CNS.Neuron. 2019 Sep 25;103(6):1073-1085.e6. doi: 10.1016/j.neuron.2019.07.007. Epub 2019 Aug 7. Neuron. 2019. PMID: 31400829 Free PMC article.
-
Neuroligin 2 governs synaptic morphology and function through RACK1-cofilin signaling in Drosophila.Commun Biol. 2023 Oct 18;6(1):1056. doi: 10.1038/s42003-023-05428-3. Commun Biol. 2023. PMID: 37853189 Free PMC article.
-
Cell-autonomous roles of ARX in cell proliferation and neuronal migration during corticogenesis.J Neurosci. 2008 May 28;28(22):5794-805. doi: 10.1523/JNEUROSCI.1067-08.2008. J Neurosci. 2008. PMID: 18509041 Free PMC article.
-
The Actin-Binding Protein Cofilin and Its Interaction With Cortactin Are Required for Podosome Patterning in Osteoclasts and Bone Resorption In Vivo and In Vitro.J Bone Miner Res. 2016 Sep;31(9):1701-12. doi: 10.1002/jbmr.2851. Epub 2016 May 27. J Bone Miner Res. 2016. PMID: 27064822 Free PMC article.
References
-
- Adams M.E., Minamide L.S., Duester G., Bamburg J.R., Minamide L.S., Duester G., Bamburg J.R., Duester G., Bamburg J.R., Bamburg J.R. Nucleotide sequence and expression of a cDNA encoding chick brain actin depolymerizing factor. Biochemistry. 1990;29:7414–7420. - PubMed
-
- Anderson S.A., Eisenstat D.D., Shi L., Rubenstein J.L., Eisenstat D.D., Shi L., Rubenstein J.L., Shi L., Rubenstein J.L., Rubenstein J.L. Interneuron migration from basal forebrain to neocortex: Dependence on Dlx genes. Science. 1997;278:474–476. - PubMed
-
- Ayala R., Shu T., Tsai L.H., Shu T., Tsai L.H., Tsai L.H. Trekking across the brain: The journey of neuronal migration. Cell. 2007;128:29–43. - PubMed
-
- Cappello S., Attardo A., Wu X., Iwasato T., Itohara S., Wilsch-Brauninger M., Eilken H.M., Rieger M.A., Schroeder T.T., Huttner W.B., Attardo A., Wu X., Iwasato T., Itohara S., Wilsch-Brauninger M., Eilken H.M., Rieger M.A., Schroeder T.T., Huttner W.B., Wu X., Iwasato T., Itohara S., Wilsch-Brauninger M., Eilken H.M., Rieger M.A., Schroeder T.T., Huttner W.B., Iwasato T., Itohara S., Wilsch-Brauninger M., Eilken H.M., Rieger M.A., Schroeder T.T., Huttner W.B., Itohara S., Wilsch-Brauninger M., Eilken H.M., Rieger M.A., Schroeder T.T., Huttner W.B., Wilsch-Brauninger M., Eilken H.M., Rieger M.A., Schroeder T.T., Huttner W.B., Eilken H.M., Rieger M.A., Schroeder T.T., Huttner W.B., Rieger M.A., Schroeder T.T., Huttner W.B., Schroeder T.T., Huttner W.B., Huttner W.B., et al. The Rho-GTPase cdc42 regulates neural progenitor fate at the apical surface. Nat. Neurosci. 2006;9:1099–1107. - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
Molecular Biology Databases