Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007 Sep 15;67(18):8460-7.
doi: 10.1158/0008-5472.CAN-07-0108.

Knock-in of mutant K-ras in nontumorigenic human epithelial cells as a new model for studying K-ras mediated transformation

Affiliations

Knock-in of mutant K-ras in nontumorigenic human epithelial cells as a new model for studying K-ras mediated transformation

Hiroyuki Konishi et al. Cancer Res. .

Abstract

The oncogenic function of mutant ras in mammalian cells has been extensively investigated using multiple human and animal models. These systems include overexpression of exogenous mutant ras transgenes, conditionally expressed knock-in mouse models, and somatic cell knockout of mutant and wild-type ras genes in human cancer cell lines. However, phenotypic discrepancies between knock-in mice and transgenic mutant ras overexpression prompted us to evaluate the consequences of targeted knock-in of an oncogenic K-ras mutation in the nontumorigenic human breast epithelial cell line MCF-10A and hTERT-immortalized human mammary epithelial cells. Our results show several significant differences between mutant K-ras knock-in cells versus their transgene counterparts, including limited phosphorylation of the downstream molecules extracellular signal-regulated kinase and AKT, minor proliferative capacity in the absence of an exogenous growth factor, and the inability to form colonies in semisolid medium. Analysis of 16 cancer cell lines carrying mutant K-ras genes indicated that 50% of cancer cells harbor nonoverexpressed heterozygous K-ras mutations similar to the expression seen in our knock-in cell lines. Thus, this system serves as a new model for elucidating the oncogenic contribution of mutant K-ras as expressed in a large fraction of human cancer cells.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms