Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007 Oct 15;79(20):7669-75.
doi: 10.1021/ac070814z. Epub 2007 Sep 19.

Simultaneous electrochemical detection of nitric oxide and carbon monoxide generated from mouse kidney organ tissues

Affiliations

Simultaneous electrochemical detection of nitric oxide and carbon monoxide generated from mouse kidney organ tissues

Youngmi Lee et al. Anal Chem. .

Abstract

A planar-type amperometric dual microsensor for simultaneous detection of nitric oxide and carbon monoxide is presented. The sensor consists of a dual platinum microdisk-based working electrode (WE) and a Ag/AgCl counter/reference electrode covered with an expanded poly(tetrafluoroethylene) (Tetra-tex) gas-permeable membrane. The dual WE possesses two different platinized platinum disks (WE1 and WE2, 250 and 25 microm in diameter, respectively). The larger WE1 is further modified with electrochemical deposition of tin. Use of two sensing disks different in their size as well as in their surface modification produces apparently different sensitivity ratios of NO to CO at WE1 and at WE2 (approximately 2 and approximately 10, respectively) that are induced by favorable CO oxidation on the surface of tin versus platinum. Anodic currents independently measured at WE1 and at WE2 are successfully converted to the concentrations of NO and CO in the co-presence of these gases using the differentiated sensitivities at each electrode. The sensor is evaluated in terms of its analytical performance: respectable linear dynamic range (sub nM to microM); low detection limit (approximately 1 nM for NO and <5 nM for CO); selectivity (over nitrite up to approximately 1 mM); and sensitivity (sufficient for analyzing physiological levels of NO and CO). Using the NO/CO dual microsensor, real-time, simultaneous, direct, and quantitative measurements of NO and CO generated from living biological tissue (mouse, c57, kidney) surfaces, for the first time, are reported.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources