Central carbon metabolism in the progression of mammary carcinoma
- PMID: 17879159
- PMCID: PMC2440942
- DOI: 10.1007/s10549-007-9732-3
Central carbon metabolism in the progression of mammary carcinoma
Abstract
There is a growing belief that the metabolic program of breast tumor cells could be a therapeutic target. Yet, without detailed information on central carbon metabolism in breast tumors it is impossible to know which metabolic pathways to target, and how their inhibition might influence different stages of breast tumor progression. Here we perform the first comprehensive profiling of central metabolism in the MCF10 model of mammary carcinoma, where the steps of breast tumor progression (transformation, tumorigenicity and metastasis) can all be examined in the context of the same genetic background. The metabolism of [U-(13)C]-glucose by a series of progressively more aggressive MCF10 cell lines was tracked by 2D NMR and mass spectrometry. From this analysis the flux of carbon through distinct metabolic reactions was quantified by isotopomer modeling. The results indicate widespread changes to central metabolism upon cellular transformation including increased carbon flux through the pentose phosphate pathway (PPP), the TCA cycle, as well as increased synthesis of glutamate, glutathione and fatty acids (including elongation and desaturation). The de novo synthesis of glycine increased upon transformation as well as at each subsequent step of breast tumor cell progression. Interestingly, the major metabolic shift in metastatic cells is a large increase in the de novo synthesis of proline. This work provides the first comprehensive view of changes to central metabolism as a result of breast tumor progression.
Figures





References
-
- {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.1085/jgp.8.6.519', 'is_inner': False, 'url': 'https://doi.org/10.1085/jgp.8.6.519'}, {'type': 'PMC', 'value': 'PMC2140820', 'is_inner': False, 'url': 'https://pmc.ncbi.nlm.nih.gov/articles/PMC2140820/'}, {'type': 'PubMed', 'value': '19872213', 'is_inner': True, 'url': 'https://pubmed.ncbi.nlm.nih.gov/19872213/'}]}
- Warburg O, Wind F, Negelein E (1927) The metabolism of tumors in the body. J Gen Physiol 8:519–530 - PMC - PubMed
-
- {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.1158/0008-5472.CAN-06-1501', 'is_inner': False, 'url': 'https://doi.org/10.1158/0008-5472.can-06-1501'}, {'type': 'PubMed', 'value': '16982728', 'is_inner': True, 'url': 'https://pubmed.ncbi.nlm.nih.gov/16982728/'}]}
- Kim JW, Dang CV (2006) Cancer’s molecular sweet tooth and the Warburg effect. Cancer Res 66:8927–8930 - PubMed
-
- {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.1146/annurev.med.53.082901.104028', 'is_inner': False, 'url': 'https://doi.org/10.1146/annurev.med.53.082901.104028'}, {'type': 'PubMed', 'value': '11818465', 'is_inner': True, 'url': 'https://pubmed.ncbi.nlm.nih.gov/11818465/'}]}
- Czernin J, Phelps ME (2002) Positron emission tomography scanning: current and future applications. Annu Rev Med 53:89–112 - PubMed
-
- {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.1016/j.bbrc.2003.11.136', 'is_inner': False, 'url': 'https://doi.org/10.1016/j.bbrc.2003.11.136'}, {'type': 'PubMed', 'value': '14697210', 'is_inner': True, 'url': 'https://pubmed.ncbi.nlm.nih.gov/14697210/'}]}
- Zu XL, Guppy M (2004) Cancer metabolism: facts, fantasy, and fiction. Biochem Biophys Res Commun 313:459–465 - PubMed
-
- {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.1023/A:1009577811584', 'is_inner': False, 'url': 'https://doi.org/10.1023/a:1009577811584'}, {'type': 'PubMed', 'value': '14973383', 'is_inner': True, 'url': 'https://pubmed.ncbi.nlm.nih.gov/14973383/'}]}
- Miller FR (2000) Xenograft models of premalignant breast disease. J Mammary Gland Biol Neoplasia 5:379–391 - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Medical