DNA polymorphisms in the pepA and PPE18 genes among clinical strains of Mycobacterium tuberculosis: implications for vaccine efficacy
- PMID: 17893137
- PMCID: PMC2168324
- DOI: 10.1128/IAI.00335-07
DNA polymorphisms in the pepA and PPE18 genes among clinical strains of Mycobacterium tuberculosis: implications for vaccine efficacy
Abstract
Tuberculosis continues to be a leading cause of death worldwide. Development of an effective vaccine against Mycobacterium tuberculosis is necessary to reduce the global burden of this disease. Mtb72F, consisting of the protein products of the pepA and PPE18 genes, is the first subunit tuberculosis vaccine to undergo phase I clinical trials. To obtain insight into the ability of Mtb72F to induce an immune response capable of recognizing different strains of M. tuberculosis, we investigated the genomic diversity of the pepA and PPE18 genes among 225 clinical strains of M. tuberculosis from two different geographical locations, Arkansas and Turkey, representing a broad range of genotypes of M. tuberculosis. A combination of single nucleotide polymorphisms (SNPs) and insertion/deletions resulting in amino acid changes in the PPE18 protein occurred in 47 (20.9%) of the 225 study strains, whereas SNPs resulted in amino acid changes in the PepA protein in 14 (6.2%) of the 225 study strains. Of the 122 Arkansas study strains and the 103 Turkey study strains, 32 (26.2%) and 15 (14.6%), respectively, had at least one genetic change leading to an alteration of the amino acid sequence of the PPE18 protein, and many of the changes occurred in regions previously reported to be potential T-cell epitopes. Thus, immunity induced by Mtb72F may not recognize a proportion of M. tuberculosis clinical strains.
Figures

Similar articles
-
High Sequence Variability of the ppE18 Gene of Clinical Mycobacterium tuberculosis Complex Strains Potentially Impacts Effectivity of Vaccine Candidate M72/AS01E.PLoS One. 2016 Mar 24;11(3):e0152200. doi: 10.1371/journal.pone.0152200. eCollection 2016. PLoS One. 2016. PMID: 27011018 Free PMC article.
-
PPE18 and PepA Variations in Mycobacterium tuberculosis Clinical Isolates from Makassar, Indonesia: Challenges for Immune Recognition and Vaccine Development.Int J Mycobacteriol. 2025 Apr 1;14(2):191-200. doi: 10.4103/ijmy.ijmy_70_25. Epub 2025 Jun 20. Int J Mycobacteriol. 2025. PMID: 40540664
-
Using epitope predictions to evaluate efficacy and population coverage of the Mtb72f vaccine for tuberculosis.BMC Immunol. 2010 Mar 30;11:18. doi: 10.1186/1471-2172-11-18. BMC Immunol. 2010. PMID: 20353587 Free PMC article.
-
[Novel vaccines against M. tuberculosis].Kekkaku. 2006 Dec;81(12):745-51. Kekkaku. 2006. PMID: 17240920 Review. Japanese.
-
A PE_PGRS33 protein of Mycobacterium tuberculosis: an ideal target for future tuberculosis vaccine design.Expert Rev Vaccines. 2015 May;14(5):699-711. doi: 10.1586/14760584.2015.1015995. Epub 2015 Feb 19. Expert Rev Vaccines. 2015. PMID: 25693607 Review.
Cited by
-
Construction of an Expression Vector Containing Mtb72F of Mycobacterium tuberculosis.Cell J. 2012 Spring;14(1):61-6. Epub 2012 Jun 13. Cell J. 2012. PMID: 23626939 Free PMC article.
-
Evolution of smooth tubercle Bacilli PE and PE_PGRS genes: evidence for a prominent role of recombination and imprint of positive selection.PLoS One. 2013 May 21;8(5):e64718. doi: 10.1371/journal.pone.0064718. Print 2013. PLoS One. 2013. PMID: 23705005 Free PMC article.
-
Comparison of the predicted population coverage of tuberculosis vaccine candidates Ag85B-ESAT-6, Ag85B-TB10.4, and Mtb72f via a bioinformatics approach.PLoS One. 2012;7(7):e40882. doi: 10.1371/journal.pone.0040882. Epub 2012 Jul 17. PLoS One. 2012. PMID: 22815851 Free PMC article.
-
Immunological consequences of strain variation within the Mycobacterium tuberculosis complex.Eur J Immunol. 2017 Mar;47(3):432-445. doi: 10.1002/eji.201646562. Epub 2017 Feb 24. Eur J Immunol. 2017. PMID: 28150302 Free PMC article. Review.
-
Whole genome sequencing, analyses of drug resistance-conferring mutations, and correlation with transmission of Mycobacterium tuberculosis carrying katG-S315T in Hanoi, Vietnam.Sci Rep. 2019 Oct 25;9(1):15354. doi: 10.1038/s41598-019-51812-7. Sci Rep. 2019. PMID: 31653940 Free PMC article.
References
-
- Barnes, P. F., Z. Yang, S. Preston-Martin, J. M. Pogoda, B. E. Jones, M. Otaya, K. D. Eisenach, L. Knowles, S. Harvey, and M. D. Cave. 1997. Patterns of tuberculosis transmission in central Los Angeles. JAMA 278:1159-1163. - PubMed
-
- Behr, M. A., M. A. Wilson, W. P. Gill, H. Salamon, G. K. Schoolnik, S. Rane, and P. M. Small. 1999. Comparative genomics of BCG vaccines by whole-genome DNA microarray. Science 284:1520-1523. - PubMed
-
- Bifani, P. J., B. Mathema, N. E. Kurepina, and B. N. Kreiswirth. 2002. Global dissemination of the Mycobacterium tuberculosis W-Beijing family strains. Trends Microbiol. 10:45-52. - PubMed
-
- Bloom, B., and P. E. M. Fine. 1994. The BCG experience: implications for future vaccines against tuberculosis, p. 531-557. In B. Bloom (ed.), Tuberculosis: protection, pathogenesis, and control. ASM Press, Washington, DC.
-
- Brandt, L., Y. A. Skeiky, M. R. Alderson, Y. Lobet, W. Dalemans, O. C. Turner, R. J. Basaraba, A. A. Izzo, T. M. Lasco, P. L. Chapman, S. G. Reed, and I. M. Orme. 2004. The protective effect of the Mycobacterium bovis BCG vaccine is increased by coadministration with the Mycobacterium tuberculosis 72-kilodalton fusion polyprotein Mtb72F in M. tuberculosis-infected guinea pigs. Infect. Immun. 72:6622-6632. - PMC - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Miscellaneous