Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007 Oct;107(4):605-15.
doi: 10.1097/01.anes.0000281916.65365.4e.

Activation of a G protein-coupled inwardly rectifying K+ current and suppression of Ih contribute to dexmedetomidine-induced inhibition of rat hypothalamic paraventricular nucleus neurons

Affiliations

Activation of a G protein-coupled inwardly rectifying K+ current and suppression of Ih contribute to dexmedetomidine-induced inhibition of rat hypothalamic paraventricular nucleus neurons

Tetsuro Shirasaka et al. Anesthesiology. 2007 Oct.

Abstract

Background: Alpha2-adrenoceptor agonist has been reported to produce inhibition of arginine vasopressin release, diuresis, and sympatholytic effects. However, its mechanisms of central action remain incompletely understood. Hypothalamic paraventricular nucleus (PVN) neurons, which are in direct contact with noradrenergic synapses and are controlled by the hyperpolarization-activated currents, are called Ih (H current). The effect of dexmedetomidine, a highly selective and potent agonist, at alpha2 adrenoceptors on Ih is unknown. The purpose of this study was to examine the effects of dexmedetomidine on the PVN neuron, which is involved in the arginine vasopressin release and autonomic regulation.

Methods: The authors investigated the effects of dexmedetomidine on the membrane properties in PVN magnocellular neurons and an Ih in PVN parvocellular neurons with a whole cell patch clamp technique using a rat brain slice preparation.

Results: Dexmedetomidine dose-dependently hyperpolarized PVN magnocellular neurons. In the voltage clamp mode, dexmedetomidine induced an outward current, with a reversal potential of -94 mV, and this was shown to depend on the external concentration of K. Pretreatment with Ba or peptide toxin tertiapin blocked hyperpolarization induced by dexmedetomidine. The effect of dexmedetomidine was blocked by an alpha2-adrenoceptor antagonist, yohimbine. Ih was suppressed dose dependently by dexmedetomidine in PVN parvocellular neurons. Pretreatment with Cs occluded the Ih suppression by dexmedetomidine. Yohimbine blocked the Ih suppression by dexmedetomidine. The Ih sensitive to dexmedetomidine was weakly modulated by intracellular cyclic adenosine monophosphate.

Conclusions: Dexmedetomidine inhibited PVN magnocellular neurons by activation of the G protein-coupled inwardly rectifying K current and inhibited PVN parvocellular neurons by suppression of Ih.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources