The role of site accessibility in microRNA target recognition
- PMID: 17893677
- DOI: 10.1038/ng2135
The role of site accessibility in microRNA target recognition
Abstract
MicroRNAs are key regulators of gene expression, but the precise mechanisms underlying their interaction with their mRNA targets are still poorly understood. Here, we systematically investigate the role of target-site accessibility, as determined by base-pairing interactions within the mRNA, in microRNA target recognition. We experimentally show that mutations diminishing target accessibility substantially reduce microRNA-mediated translational repression, with effects comparable to those of mutations that disrupt sequence complementarity. We devise a parameter-free model for microRNA-target interaction that computes the difference between the free energy gained from the formation of the microRNA-target duplex and the energetic cost of unpairing the target to make it accessible to the microRNA. This model explains the variability in our experiments, predicts validated targets more accurately than existing algorithms, and shows that genomes accommodate site accessibility by preferentially positioning targets in highly accessible regions. Our study thus demonstrates that target accessibility is a critical factor in microRNA function.
Comment in
-
How microRNAs choose their targets.Nat Genet. 2007 Oct;39(10):1191-2. doi: 10.1038/ng1007-1191. Nat Genet. 2007. PMID: 17898777 No abstract available.
Similar articles
-
Analysis of microRNA-target interactions by a target structure based hybridization model.Pac Symp Biocomput. 2008:64-74. Pac Symp Biocomput. 2008. PMID: 18232104
-
Potent effect of target structure on microRNA function.Nat Struct Mol Biol. 2007 Apr;14(4):287-94. doi: 10.1038/nsmb1226. Epub 2007 Apr 1. Nat Struct Mol Biol. 2007. PMID: 17401373
-
Architecture of a validated microRNA::target interaction.Chem Biol. 2004 Dec;11(12):1619-23. doi: 10.1016/j.chembiol.2004.09.010. Chem Biol. 2004. PMID: 15610845
-
Polymorphisms in microRNA targets: a gold mine for molecular epidemiology.Carcinogenesis. 2008 Jul;29(7):1306-11. doi: 10.1093/carcin/bgn116. Epub 2008 May 13. Carcinogenesis. 2008. PMID: 18477647 Review.
-
Experimental identification of microRNA targets.Gene. 2010 Feb 1;451(1-2):1-5. doi: 10.1016/j.gene.2009.11.008. Epub 2009 Nov 24. Gene. 2010. PMID: 19944134 Review.
Cited by
-
Building a robust a-p axis.Curr Genomics. 2012 Jun;13(4):278-88. doi: 10.2174/138920212800793348. Curr Genomics. 2012. PMID: 23204917 Free PMC article.
-
Kalirin-RAC controls nucleokinetic migration in ADRN-type neuroblastoma.Life Sci Alliance. 2021 Mar 3;4(5):e201900332. doi: 10.26508/lsa.201900332. Print 2021 May. Life Sci Alliance. 2021. PMID: 33658318 Free PMC article.
-
Revealing the dynamic whole transcriptome landscape of Clonorchis sinensis: Insights into the regulatory roles of noncoding RNAs and microtubule-related genes in development.PLoS Negl Trop Dis. 2024 Jul 11;18(7):e0012311. doi: 10.1371/journal.pntd.0012311. eCollection 2024 Jul. PLoS Negl Trop Dis. 2024. PMID: 38991028 Free PMC article.
-
Predicting associations between microRNAs and target genes in breast cancer by bioinformatics analyses.Oncol Lett. 2016 Aug;12(2):1067-1073. doi: 10.3892/ol.2016.4731. Epub 2016 Jun 15. Oncol Lett. 2016. PMID: 27446395 Free PMC article.
-
RAD52 variants predict platinum resistance and prognosis of cervical cancer.PLoS One. 2012;7(11):e50461. doi: 10.1371/journal.pone.0050461. Epub 2012 Nov 29. PLoS One. 2012. PMID: 23209746 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases