Role of the midline glia and neurons in the formation of the axon commissures in the central nervous system of the Drosophila embryo
- PMID: 1789544
- DOI: 10.1111/j.1749-6632.1991.tb15604.x
Role of the midline glia and neurons in the formation of the axon commissures in the central nervous system of the Drosophila embryo
Abstract
A row of midline precursor cells separates the two lateral neurogenic regions that give rise to most of the Drosophila CNS. From these midline precursors arises a discrete set of special glia and neurons. The growth cones of many CNS neurons initially head straight towards the midline and change their behavior after traversing it, leading to the hypothesis that these midline cells play a key role in the formation of the axon commissures. We have used a variety of cellular and molecular genetic techniques to elucidate the cells and interactions, including specific cell migrations, that are important for the normal formation of the two major commissures in each segment. This cellular analysis has led to a model that proposes a series of sequential cell interactions controlling the three stages in commissure development: (1) formation of the posterior commissure, (2) formation of the anterior commissure, and (3) separation of the two commissures. An initial genetic test of this model has used a number of mutations that, by either eliminating or altering the differentiation of various midline cells, perturb the development of the axon commissures in a predictable manner.
Similar articles
-
The midline of the Drosophila central nervous system: a model for the genetic analysis of cell fate, cell migration, and growth cone guidance.Cell. 1991 Feb 22;64(4):801-15. doi: 10.1016/0092-8674(91)90509-w. Cell. 1991. PMID: 1997208
-
The Drosophila Wnt5 protein mediates selective axon fasciculation in the embryonic central nervous system.Dev Biol. 2004 Aug 15;272(2):362-75. doi: 10.1016/j.ydbio.2004.04.034. Dev Biol. 2004. PMID: 15282154
-
CNS midline cells influence the division and survival of lateral glia in the Drosophila nervous system.Genesis. 2007 May;45(5):266-74. doi: 10.1002/dvg.20283. Genesis. 2007. PMID: 17457927
-
Glia development in the embryonic CNS of Drosophila.Curr Opin Neurobiol. 1999 Oct;9(5):531-6. doi: 10.1016/S0959-4388(99)00008-2. Curr Opin Neurobiol. 1999. PMID: 10508736 Review.
-
Glia development in the embryonic CNS of Drosophila.Adv Exp Med Biol. 1999;468:23-32. doi: 10.1007/978-1-4615-4685-6_3. Adv Exp Med Biol. 1999. PMID: 10635017 Review.
Cited by
-
Octopamine immunoreactivity in the fruit fly Drosophila melanogaster.J Comp Neurol. 1995 May 29;356(2):275-87. doi: 10.1002/cne.903560210. J Comp Neurol. 1995. PMID: 7629319 Free PMC article.
-
Analysis of the transcriptional activation domain of the Drosophila tango bHLH-PAS transcription factor.Dev Genes Evol. 2005 May;215(5):221-9. doi: 10.1007/s00427-004-0462-9. Epub 2005 Apr 8. Dev Genes Evol. 2005. PMID: 15818484
-
Development of piriform cortex interhemispheric connections via the anterior commissure: progressive and regressive strategies.Brain Struct Funct. 2018 Dec;223(9):4067-4085. doi: 10.1007/s00429-018-1741-y. Epub 2018 Aug 24. Brain Struct Funct. 2018. PMID: 30141078 Free PMC article.
-
How to innervate a simple gut: familiar themes and unique aspects in the formation of the insect enteric nervous system.Dev Dyn. 2007 Jul;236(7):1841-64. doi: 10.1002/dvdy.21138. Dev Dyn. 2007. PMID: 17420985 Free PMC article. Review.
-
Analog of vertebrate anionic sites in blood-brain interface of larval Drosophila.Cell Tissue Res. 1994 Jul;277(1):87-95. doi: 10.1007/BF00303084. Cell Tissue Res. 1994. PMID: 8055541