Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2008 Mar;25(3):500-11.
doi: 10.1007/s11095-007-9347-8. Epub 2007 Sep 26.

Natural and synthetic polymers as inhibitors of drug efflux pumps

Affiliations
Review

Natural and synthetic polymers as inhibitors of drug efflux pumps

Martin Werle. Pharm Res. 2008 Mar.

Abstract

Inhibition of efflux pumps is an emerging approach in cancer therapy and drug delivery. Since it has been discovered that polymeric pharmaceutical excipients such as Tweens or Pluronics can inhibit efflux pumps, various other polymers have been investigated regarding their potential efflux pump inhibitory activity. Among them are polysaccharides, polyethylene glycols and derivatives, amphiphilic block copolymers, dendrimers and thiolated polymers. In the current review article, natural and synthetic polymers that are capable of inhibiting efflux pumps as well as their application in cancer therapy and drug delivery are discussed.

PubMed Disclaimer

Figures

Fig. 1
Fig. 1
Chemical structure of anionic gums: a gellan gum, b xanthan gum
Fig. 2
Fig. 2
Chemical structure of alginates; consecutive M-residues (MMM), consecutive G-residues (GGG), alternating M and G-residues (MGM)
Fig. 3
Fig. 3
Chemical structures of Tween® 80 and TPGS 1000
Fig. 4
Fig. 4
Plasma curves of paclitaxel (ng/ml) in rats after oral administration of 25 mg/kg paclitaxel (open circle) and in combination with 50 mg/kg TPGS 1000 (filled circle). Figure adapted from (18)
Fig. 5
Fig. 5
Plasma curves of Rho-123 (ng/ml) in rats after oral administration of 1.5 mg Rhodamine 123 in Pluronic® P85 tablets (filled circle), Myrj® 52 tablets (triangle) and chito–TBA/GSH tablets (filled square). Figure adapted from (48)
Fig. 6
Fig. 6
Chemical structures of poloxamers (Pluronics®)
Fig. 7
Fig. 7
Chemical structure of a polyamidoamine (PAMAM) dendrimer
Fig. 8
Fig. 8
Structure of thiomers: a chitosan–thiobutylamidine (chito–TBA), b poly(acrylic acid)-cysteine (PAA-Cys)
Fig. 9
Fig. 9
Schematic presentation of interactions between polymeric efflux pump inhibitors and efflux pumps; polymer (∧∧∧), ATP (triangle), drug (square); a inhibition mediated by ATP depletion, b inhibition mediated by interactions with the membrane, c bypassing drug efflux by a drug-polymer conjugate, d inhibition mediated by interfering with ATP-binding sites and e blocking of drug binding sites or other sites within the trans-membrane domains (TMB)

Similar articles

Cited by

References

    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.1016/0005-2736(76)90160-7', 'is_inner': False, 'url': 'https://doi.org/10.1016/0005-2736(76)90160-7'}, {'type': 'PubMed', 'value': '990323', 'is_inner': True, 'url': 'https://pubmed.ncbi.nlm.nih.gov/990323/'}]}
    2. R. L. Juliano and V. Ling. A surface glycoprotein modulating drug permeability in Chinese hamster ovary cell mutants. Biochim. Biophys. Acta455:152–162 (1976). - PubMed
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.1073/pnas.84.21.7735', 'is_inner': False, 'url': 'https://doi.org/10.1073/pnas.84.21.7735'}, {'type': 'PMC', 'value': 'PMC299375', 'is_inner': False, 'url': 'https://pmc.ncbi.nlm.nih.gov/articles/PMC299375/'}, {'type': 'PubMed', 'value': '2444983', 'is_inner': True, 'url': 'https://pubmed.ncbi.nlm.nih.gov/2444983/'}]}
    2. F. Thiebaut, T. Tsuruo, H. Hamada, M. M. Gottesman, I. Pastan, and M. C. Willingham. Cellular localization of the multidrug-resistance gene product P-glycoprotein in normal human tissues. Proc. Natl. Acad. Sci. U. S. A.84:7735–7738 (1987). - PMC - PubMed
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'PubMed', 'value': '1974900', 'is_inner': True, 'url': 'https://pubmed.ncbi.nlm.nih.gov/1974900/'}]}
    2. C. Cordon-Cardo, J. P. O’Brien, J. Boccia, D. Casals, J. R. Bertino, and M. R. Melamed. Expression of the multidrug resistance gene product (P-glycoprotein) in human normal and tumor tissues. J. Histochem. Cytochem.38:1277–1287 (1990). - PubMed
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'PMC', 'value': 'PMC3181821', 'is_inner': False, 'url': 'https://pmc.ncbi.nlm.nih.gov/articles/PMC3181821/'}, {'type': 'PubMed', 'value': '17117613', 'is_inner': True, 'url': 'https://pubmed.ncbi.nlm.nih.gov/17117613/'}]}
    2. F. Girardin. Membrane transporter proteins: a challenge for CNS drug development. Dialogues Clin. Neurosci.8:311–321 (2006). - PMC - PubMed
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.1016/j.addr.2004.02.006', 'is_inner': False, 'url': 'https://doi.org/10.1016/j.addr.2004.02.006'}, {'type': 'PubMed', 'value': '15191791', 'is_inner': True, 'url': 'https://pubmed.ncbi.nlm.nih.gov/15191791/'}]}
    2. S. Majumdar, S. Duvvuri, and A. K. Mitra. Membrane transporter/receptor-targeted prodrug design: strategies for human and veterinary drug development. Adv. Drug Deliv. Rev.56:1437–1452 (2004). - PubMed

MeSH terms