Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2007 Oct;26(7):1721-37.
doi: 10.1111/j.1460-9568.2007.05780.x.

Cell therapy and stem cells in animal models of motor neuron disorders

Affiliations
Review

Cell therapy and stem cells in animal models of motor neuron disorders

Eva Hedlund et al. Eur J Neurosci. 2007 Oct.

Abstract

Amyotrophic lateral sclerosis (ALS), spinal bulbar muscular atrophy (or Kennedy's disease), spinal muscular atrophy and spinal muscular atrophy with respiratory distress 1 are neurodegenerative disorders mainly affecting motor neurons and which currently lack effective therapies. Recent studies in animal models as well as primary and embryonic stem cell models of ALS, utilizing over-expression of mutated forms of Cu/Zn superoxide dismutase 1, have shown that motor neuron degeneration in these models is in part a non cell-autonomous event and that by providing genetically non-compromised supporting cells such as microglia or growth factor-excreting cells, onset can be delayed and survival increased. Using models of acute motor neuron injury it has been shown that embryonic stem cell-derived motor neurons implanted into the spinal cord can innervate muscle targets and improve functional recovery. Thus, a rationale exists for the development of cell therapies in motor neuron diseases aimed at either protecting and/or replacing lost motor neurons, interneurons as well as non-neuronal cells. This review evaluates approaches used in animal models of motor neuron disorders and their therapeutic relevance.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources