Programmed death-1 blockade enhances expansion and functional capacity of human melanoma antigen-specific CTLs
- PMID: 17898045
- DOI: 10.1093/intimm/dxm091
Programmed death-1 blockade enhances expansion and functional capacity of human melanoma antigen-specific CTLs
Abstract
Negative co-stimulatory signaling mediated via cell surface programmed death (PD)-1 expression modulates T and B cell activation and is involved in maintaining peripheral tolerance. In this study, we examined the effects of a fully human PD-1-abrogating antibody on the in vitro expansion and function of human vaccine-induced CD8+ T cells (CTLs) specific for the melanoma-associated antigens glycoprotein 100 (gp100) and melanoma antigen recognized by T cells (MART)-1. PD-1 blockade during peptide stimulation augmented the absolute numbers of CD3+, CD4+, CD8+ and gp100/MART-1 MHC:peptide tetramer+ CTLs. This correlated with increased frequencies of IFN-gamma-secreting antigen-specific cells and augmented lysis of gp100+/MART-1+ melanoma targets. PD-1 blockade also increased the fraction of antigen-specific CTLs that recognized melanoma targets by degranulation, suggesting increased recognition efficiency for cognate peptide. The increased frequencies and absolute numbers of antigen-specific CTLs by PD-1 blockade resulted from augmented proliferation, not decreased apoptosis. Kinetic analysis of cytokine secretion demonstrated that PD-1 blockade increased both type-1 and type-2 cytokine accumulation in culture without any apparent skewing of the cytokine repertoire. These findings have implications for developing new cancer immunotherapy strategies.
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
Research Materials
