Endothelial-specific knockdown of interleukin-1 (IL-1) type 1 receptor differentially alters CNS responses to IL-1 depending on its route of administration
- PMID: 17898219
- PMCID: PMC6673171
- DOI: 10.1523/JNEUROSCI.3357-07.2007
Endothelial-specific knockdown of interleukin-1 (IL-1) type 1 receptor differentially alters CNS responses to IL-1 depending on its route of administration
Abstract
Interleukin-1 (IL-1) has been implicated as a critical mediator of neuroimmune communication. In the brain, the functional receptor for IL-1, type 1 IL-1 receptor (IL-1R1), is localized primarily to the endothelial cells. In this study, we created an endothelial-specific IL-1R1 knockdown model to test the role of endothelial IL-1R1 in mediating the effects of IL-1. Neuronal activation in the hypothalamus was measured by c-fos expression in the paraventricular nucleus and the ventromedial preoptic area. In addition, two specific sickness symptoms, febrile response and reduction of locomotor activity, were studied. Intracerebroventricular injection of IL-1 induced leukocyte infiltration into the CNS, activation of hypothalamic neurons, fever, and reduced locomotor activity in normal mice. Endothelial-specific knockdown of IL-1R1 abrogated all these responses. Intraperitoneal injection of IL-1 also induced neuronal activation in the hypothalamus, fever, and reduced locomotor activity, without inducing leukocyte infiltration into the brain. Endothelial-specific knockdown of IL-1R1 suppressed intraperitoneal IL-1-induced fever, but not the induction of c-fos in hypothalamus. When IL-1 was given intravenously, endothelial knockdown of IL-1R1 abolished intravenous IL-1-induced CNS activation and the two monitored sickness symptoms. In addition, endothelial-specific knockdown of IL-1R1 blocked the induction of cyclooxygenase-2 expression induced by all three routes of IL-1 administration. These results show that the effects of intravenous and intracerebroventricular IL-1 are mediated by endothelial IL-1R1, whereas the effects of intraperitoneal IL-1 are partially dependent on endothelial IL-1R1.
Figures












References
-
- Akaneya Y, Takahashi M, Hatanaka H. Interleukin-1 beta enhances survival and interleukin-6 protects against MPP+ neurotoxicity in cultures of fetal rat dopaminergic neurons. Exp Neurol. 1995;136:44–52. - PubMed
-
- Berkenbosch F, van Oers J, del Rey A, Tilders F, Besedovsky H. Corticotropin-releasing factor-producing neurons in the rat activated by interleukin-1. Science. 1987;238:524–526. - PubMed
-
- Breder CD, Saper CB. Expression of inducible cyclooxygenase mRNA in the mouse brain after systemic administration of bacterial lipopolysaccharide. Brain Res. 1996;713:64–69. - PubMed
-
- Cao C, Matsumura K, Yamagata K, Watanabe Y. Endothelial cells of the rat brain vasculature express cyclooxygenase-2 mRNA in response to systemic interleukin-1 beta: a possible site of prostaglandin synthesis responsible for fever. Brain Res. 1996;733:263–272. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Molecular Biology Databases
Research Materials