Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007 Oct;105(4):998-1005, table of contents.
doi: 10.1213/01.ane.0000278865.11991.9d.

Human peripheral blood mononuclear cells express nociceptin/orphanin FQ, but not mu, delta, or kappa opioid receptors

Affiliations

Human peripheral blood mononuclear cells express nociceptin/orphanin FQ, but not mu, delta, or kappa opioid receptors

John P Williams et al. Anesth Analg. 2007 Oct.

Abstract

Background: Expression of opioid receptors on peripheral blood mononuclear cells (PBMC) is controversial. These receptors are currently classified as classical (MOP/mu/mu, DOP/delta/delta and KOP/kappa/kappa) and nonclassical NOP (nociceptin/orphanin FQ; N/OFQ).

Methods: In this volunteer study we probed for the expression of both classical and nonclassical opioid receptors using 1) radioligand binding, 2) specific antibody binding, and 3) polymerase chain reaction-based experimental paradigms.

Results: Membranes prepared from PBMC from healthy volunteers did not bind either [3H]diprenorphine (a nonselective radioligand for classical opioid receptors) or [3H]N/OFQ. There was significant concentration-dependent binding of each radioligand to control tissues expressing recombinant MOP and NOP. In addition, using fluorescence-activated cell sorting paradigms, there was no binding of fluorescent naloxone or either of two MOP antibodies to whole PBMC, though fluorescent naloxone did bind to recombinant MOP (as a positive control). Using primers specific for classical and nonclassical opioid receptors, and RNA extracted from the PBMC of 10 healthy volunteers, we were also unable to detect MOP, DOP, and KOP transcripts. In contrast, NOP was detected in all samples.

Conclusions: Despite using several complementary experimental strategies, we failed to demonstrate protein for classical or nonclassical opioid receptors on PBMC from healthy volunteers. We detected NOP mRNA, suggesting low-density NOP expression on these immunocytes. It is possible that N/OFQ, produced by the PBMC itself, may be involved in the control of immune function.

PubMed Disclaimer

Publication types

LinkOut - more resources