Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007 Nov;77(1):61-8.
doi: 10.1007/s00253-007-1149-8.

Evaluation of continuous ethanol fermentation of dilute-acid corn stover hydrolysate using thermophilic anaerobic bacterium Thermoanaerobacter BG1L1

Affiliations

Evaluation of continuous ethanol fermentation of dilute-acid corn stover hydrolysate using thermophilic anaerobic bacterium Thermoanaerobacter BG1L1

Tania I Georgieva et al. Appl Microbiol Biotechnol. 2007 Nov.

Abstract

Dilute sulfuric acid pretreated corn stover is potential feedstock of industrial interest for second generation fuel ethanol production. However, the toxicity of corn stover hydrolysate (PCS) has been a challenge for fermentation by recombinant xylose fermenting organisms. In this work, the thermophilic anaerobic bacterial strain Thermoanaerobacter BG1L1 was assessed for its ability to ferment undetoxified PCS hydrolysate in a continuous immobilized reactor system at 70 degrees C. The tested strain showed significant resistance to PCS, and substrate concentrations up to 15% total solids (TS) were fermented yielding ethanol of 0.39-0.42 g/g-sugars consumed. Xylose was nearly completely utilized (89-98%) for PCS up to 10% TS, whereas at 15% TS, xylose conversion was lowered to 67%. The reactor was operated continuously for 135 days, and no contamination was seen without the use of any agent for preventing bacterial infections. This study demonstrated that the use of immobilized thermophilic anaerobic bacteria for continuous ethanol fermentation could be promising in a commercial ethanol process in terms of system stability to process hardiness and reactor contamination. The tested microorganism has considerable potential to be a novel candidate for lignocellulose bioconversion into ethanol.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources