DC-Dielectrophoretic separation of biological cells by size
- PMID: 17899384
- DOI: 10.1007/s10544-007-9130-y
DC-Dielectrophoretic separation of biological cells by size
Abstract
DC-Dielectrophoresis (DC-DEP), the induced motion of the dielectric particles in a spatially non-uniform DC electric field, is applied to separate biological cells by size. The locally non-uniform electric field is generated by an insulating hurdle fabricated within a PDMS microchannel. The cells experience a negative DEP (accordingly a repulsive) force at the corners of the hurdle where the gradient of local electric-field strength is the strongest. The DC-DEP force acting on the cells is proportional to the cells' size. Thus the moving cells deviate from the streamlines and the degree of deviation is dependent on the cell size. In this paper, we demonstrated by using this method that, combined with the electroosmotic flow, mixed biological cells of a few to tens of micrometers difference in diameter can be continuously separated into different collecting wells. For separating target cells of a specific size, all that is required is to adjust the voltage outputs of the electrodes.
Similar articles
-
Continuous separation of microparticles by size with direct current-dielectrophoresis.Electrophoresis. 2006 Feb;27(3):694-702. doi: 10.1002/elps.200500558. Electrophoresis. 2006. PMID: 16385598
-
Dual frequency dielectrophoresis with interdigitated sidewall electrodes for microfluidic flow-through separation of beads and cells.Electrophoresis. 2009 Mar;30(5):782-91. doi: 10.1002/elps.200800637. Electrophoresis. 2009. PMID: 19197906
-
DC-dielectrophoretic separation of microparticles using an oil droplet obstacle.Lab Chip. 2006 Feb;6(2):274-9. doi: 10.1039/b513183a. Epub 2005 Dec 20. Lab Chip. 2006. PMID: 16450038
-
Dielectrophoretic separation of bioparticles in microdevices: a review.Electrophoresis. 2014 Mar;35(5):691-713. doi: 10.1002/elps.201300424. Epub 2014 Feb 4. Electrophoresis. 2014. PMID: 24338825 Review.
-
Dielectrophoretic platforms for bio-microfluidic systems.Biosens Bioelectron. 2011 Jan 15;26(5):1800-14. doi: 10.1016/j.bios.2010.09.022. Epub 2010 Sep 17. Biosens Bioelectron. 2011. PMID: 20933384 Review.
Cited by
-
Temporal and spatial temperature measurement in insulator-based dielectrophoretic devices.Anal Chem. 2014 Jul 1;86(13):6516-24. doi: 10.1021/ac501083h. Epub 2014 Jun 12. Anal Chem. 2014. PMID: 24889741 Free PMC article.
-
Rapid Concentration of Nanoparticles with DC Dielectrophoresis in Focused Electric Fields.Nanoscale Res Lett. 2009 Oct 1;5(1):55-60. doi: 10.1007/s11671-009-9442-3. Nanoscale Res Lett. 2009. PMID: 20652137 Free PMC article.
-
Rare Cell Capture in Microfluidic Devices.Chem Eng Sci. 2011 Apr 1;66(7):1508-1522. doi: 10.1016/j.ces.2010.09.012. Chem Eng Sci. 2011. PMID: 21532971 Free PMC article.
-
Development of the resolution theory for gradient insulator-based dielectrophoresis.Electrophoresis. 2015 May;36(9-10):1098-106. doi: 10.1002/elps.201400504. Epub 2015 May 5. Electrophoresis. 2015. PMID: 25781578 Free PMC article.
-
The development of malaria diagnostic techniques: a review of the approaches with focus on dielectrophoretic and magnetophoretic methods.Malar J. 2016 Jul 12;15(1):358. doi: 10.1186/s12936-016-1400-9. Malar J. 2016. PMID: 27405995 Free PMC article. Review.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources