Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2007 Sep 27:7:175.
doi: 10.1186/1471-2148-7-175.

Expression pattern of three-finger toxin and phospholipase A2 genes in the venom glands of two sea snakes, Lapemis curtus and Acalyptophis peronii: comparison of evolution of these toxins in land snakes, sea kraits and sea snakes

Affiliations
Comparative Study

Expression pattern of three-finger toxin and phospholipase A2 genes in the venom glands of two sea snakes, Lapemis curtus and Acalyptophis peronii: comparison of evolution of these toxins in land snakes, sea kraits and sea snakes

Susanta Pahari et al. BMC Evol Biol. .

Abstract

Background: Snake venom composition varies widely both among closely related species and within the same species, based on ecological variables. In terrestrial snakes, such variation has been proposed to be due to snakes' diet. Land snakes target various prey species including insects (arthropods), lizards (reptiles), frogs and toads (amphibians), birds (aves), and rodents (mammals), whereas sea snakes target a single vertebrate class (fishes) and often specialize on specific types of fish. It is therefore interesting to examine the evolution of toxins in sea snake venoms compared to that of land snakes.

Results: Here we describe the expression of toxin genes in the venom glands of two sea snakes, Lapemis curtus (Spine-bellied Sea Snake) and Acalyptophis peronii (Horned Sea Snake), two members of a large adaptive radiation which occupy very different ecological niches. We constructed cDNA libraries from their venom glands and sequenced 214 and 192 clones, respectively. Our data show that despite their explosive evolutionary radiation, there is very little variability in the three-finger toxin (3FTx) as well as the phospholipase A2 (PLA2) enzymes, the two main constituents of Lapemis curtus and Acalyptophis peronii venom. To understand the evolutionary trends among land snakes, sea snakes and sea kraits, pairwise genetic distances (intraspecific and interspecific) of 3FTx and PLA2 sequences were calculated. Results show that these proteins appear to be highly conserved in sea snakes in contrast to land snakes or sea kraits, despite their extremely divergent and adaptive ecological radiation.

Conclusion: Based on these results, we suggest that streamlining in habitat and diet in sea snakes has possibly kept their toxin genes conserved, suggesting the idea that prey composition and diet breadth may contribute to the diversity and evolution of venom components.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Distribution of transcripts in the venom glands of Lapemis curtus and Acalyptophis peronii.
Figure 2
Figure 2
Pairwise intraspecific (white bar) and interspecific (black bar) distances for land snakes, sea snakes and sea kraits. Panel A: 3FTx (1a and 1b: land snakes; Pseudonaja textilis and Bungarus species respectively), 2 and 3: sea kraits and sea snakes respectively. Panel B: PLA2: (4a and 4b: land snakes; Australian elapids and Bungarus species respectively), 5 and 6: sea kraits and sea snakes respectively. RF denotes relative frequency.

Similar articles

Cited by

References

    1. Chippaux JP, Boche J, Courtois B. Electrophoretic patterns of the venoms from a litter of Bitis gabonica snakes. Toxicon. 1982;20:521–523. doi: 10.1016/0041-0101(82)90019-8. - DOI - PubMed
    1. Daltry JC, Wuster W, Thorpe RS. Diet and snake venom evolution. Nature. 1996;379:537–540. doi: 10.1038/379537a0. - DOI - PubMed
    1. Fry BG, Wickramaratna JC, Hodgson WC, Alewood PF, Kini RM, Ho H, Wuster W. Electrospray liquid chromatography/mass spectrometry fingerprinting of Acanthophis (death adder) venoms: taxonomic and toxinological implications. Rapid Commun Mass Spectrom. 2002;16:600–608. doi: 10.1002/rcm.613. - DOI - PubMed
    1. Jayanthi GP, Gowda TV. Geographical variation in India in the composition and lethal potency of Russell's viper (Vipera russelli) venom. Toxicon. 1988;26:257–264. doi: 10.1016/0041-0101(88)90216-4. - DOI - PubMed
    1. Shine R. Habitats, diets, and sympatry in snakes: a study from Australia. Can J Zool. 1977;55:1118-1128.

Publication types

Associated data

LinkOut - more resources