Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2006;15(6):293-306.
doi: 10.1159/000108936. Epub 2007 Sep 27.

Learning deficits and agenesis of synapses and myelinated axons in phosphoinositide-3 kinase-deficient mice

Affiliations

Learning deficits and agenesis of synapses and myelinated axons in phosphoinositide-3 kinase-deficient mice

Chihiro Tohda et al. Neurosignals. 2006.

Abstract

Although previous studies have reported a role for phosphoinositide-3 kinase (PI3K) in axonal definition and growth in vitro, it is not clear whether PI3K regulates axonal formation and synaptogenesis in vivo. The goal of the present study was to clarify the role of PI3K in behavioral functions and some underlying neuroanatomical structures. Immunohistochemistry, an electron-microscopic analysis and behavioral tests were carried out. Knockout mice lacking the p85alpha regulatory subunit of PI3K (p85alpha-/- mice) significantly showed learning deficits, restlessness and motivation deficit. Expression of phosphorylated Akt, which indirectly shows the activity of PI3K, was high in myelinated axons, especially in axonal bundles in the striatum of wild-type mice, but was significantly low in the striatum, cerebral cortex and the hippocampal CA3 of p85alpha-/- mice. The axonal marker protein level decreased mainly in the striatum and cerebral cortex of p85alpha-/- mice. In these two regions, myelinated axons are rich in the wild-type mice. However, the density of myelinated axons and myelin thickness were significantly low in the striatum and cerebral cortex of p85alpha-/- mice. Synaptic protein level was clearly decreased in the striatum, cerebral cortex, and hippocampus of p85alpha-/- mice when compared with wild mice. The present results suggest that PI3K plays a role in the generation and/or maintenance of synapses and myelinated axons in the brain and that deficiencies in PI3K activity result in abnormalities in several neuronal functions, including learning, restlessness and motivation.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms

Substances

LinkOut - more resources