Effects of alpha-lipoic acid on endothelial function in aged diabetic and high-fat fed rats
- PMID: 17906683
- PMCID: PMC2267261
- DOI: 10.1038/sj.bjp.0707474
Effects of alpha-lipoic acid on endothelial function in aged diabetic and high-fat fed rats
Abstract
Background and purpose: This study was conducted to investigate the effects of alpha-lipoic acid (alpha-LA) on endothelial function in diabetic and high-fat fed animal models and elucidate the potential mechanism underlying the benefits of alpha-LA.
Experimental approach: Plasma metabolites reflecting glucose and lipid metabolism, endothelial function, urinary albumin excretion (UAE), plasma and aortic malondialdehyde (MDA) and urinary 8-hydroxydeoxyguanosine (8-OHdG) were assessed in non-diabetic controls (Wistar rats), untreated Goto-Kakizaki (GK) diabetic and high-fat fed GK rats (fed with atherogenic diet only, treated with alpha-LA and treated with vehicle, for 3 months). Vascular eNOS, nitrotyrosine, carbonyl groups and superoxide anion were also assessed in the different groups.
Key results: alpha-LA and soybean oil significantly reduced both total and non-HDL serum cholesterol and triglycerides induced by atherogenic diet. MDA, carbonyl groups, vascular superoxide and 8-OHdG levels were higher in GK and high-fat fed GK groups and fully reversed with alpha-LA treatment. High-fat fed GK diabetic rats showed significantly reduced endothelial function and increased UAE, effects ameliorated with alpha-LA. This endothelial dysfunction was associated with decreased NO production, decreased expression of eNOS and increased vascular superoxide production and nitrotyrosine expression.
Conclusions and implications: alpha-LA restores endothelial function and significantly improves systemic and local oxidative stress in high-fat fed GK diabetic rats. Improved endothelial function due to alpha-LA was at least partially attributed to recoupling of eNOS and increased NO bioavailability and represents a pharmacological approach to prevent major complications associated with type 2 diabetes.
Figures








References
-
- Alp NJ, Channon KM. Regulation of endothelial nitric oxide synthase by tetrahydrobiopterin in vascular disease. Arterioscler Thromb Vasc Biol. 2004;24:413–420. - PubMed
-
- Anter E, Thomas SR, Schulz E, Shapira OM, Vita JA, Keaney JF., Jr Activation of endothelial nitric-oxide synthase by the p38 MAPK in response to black tea polyphenols. J Biol Chem. 2004;279:46637–46643. - PubMed
-
- Arcaro G, Cretti A, Balzano S, Lechi A, Muggeo M, Bonora E, et al. Insulin causes endothelial dysfunction in humans: sites and mechanisms. Circulation. 2002;105:576–582. - PubMed
-
- Brownlee M. Biochemistry and molecular cell biology of diabetic complications. Nature. 2001;414:813–820. - PubMed
-
- Burke AP, Kolodgie FD, Zieske A, Fowler DR, Weber DK, Varghese PJ, et al. Morphologic findings of coronary atherosclerotic plaques in diabetics: a postmortem study. Arterioscler Thromb Vasc Biol. 2004;24:1266–1271. - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Medical