Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2007 Sep;4(4):412-7.
doi: 10.2174/156720507781788837.

Alpha-secretase as a therapeutic target

Affiliations
Review

Alpha-secretase as a therapeutic target

Falk Fahrenholz. Curr Alzheimer Res. 2007 Sep.

Abstract

In the non-amyloidogenic pathway the alpha-secretase cleaves the amyloid precursor protein (APP) within the sequence of Abeta-peptides and precludes their formation. In addition, alpha-secretase cleavage releases an N-terminal extracellular domain with neurotrophic and neuroprotective properties. The disintegrin metalloproteinase ADAM10 has been shown to act as alpha-secretase in vivo, to prevent amyloid plaque formation and hippocampal defects in an Alzheimer disease mouse model. An increase in alpha-secretase activity therefore is an attractive strategy for treatment of AD and may be achieved by modulating selective signalling pathways. Functional characterization of the human ADAM10 promoter showed that it contains several binding elements for transcription factors which are regulated by extracellular ligands. Retinoic acid (RA) was identified as an inducer of human ADAM10 promoter activity. In human neuroblastoma cell lines RA treatment upregulated the expression of both the alpha-secretase ADAM10 and its substrates APP and the related APP-like-protein 2 (APLP2), and led to an enhanced secretion of their extracellular domains. Furthermore, G protein-coupled receptors (GPCRs) localized in brain areas affected by AD were investigated. Activation of the PAC1 receptor by the neuropeptide PACAP was identified as an approach for upregulation of the alpha-secretase pathway.

PubMed Disclaimer

Publication types

MeSH terms