Phosphoinositide-3-kinase-dependent, MyD88-independent induction of CC-type chemokines characterizes the macrophage response to Toxoplasma gondii strains with high virulence
- PMID: 17908814
- PMCID: PMC2168350
- DOI: 10.1128/IAI.00821-07
Phosphoinositide-3-kinase-dependent, MyD88-independent induction of CC-type chemokines characterizes the macrophage response to Toxoplasma gondii strains with high virulence
Abstract
Chemokines play an important role in inflammation and infection due to their ability to recruit cells of innate and adaptive immunity. Here we examined mouse macrophage chemokine responses during intracellular infections with high- and low-virulence Toxoplasma gondii strains. The high-virulence type I strain RH induced a large panel of CC-type chemokines, whereas responses elicited by strains PTG (type II) and M7741 (type III) were much weaker. Strikingly, the T. gondii-induced chemokine response occurred independently of signaling through the Toll-like receptor adaptor MyD88. Instead, production of chemokines during infection was heavily dependent upon phosphoinositide-3-kinase signaling pathways. Because infection with type I strains such as RH results in an uncontrolled proinflammatory cytokine response, we hypothesize that this virulence phenotype is a consequence of early strong induction of chemokines by type I, but not type II or III, Toxoplasma strains.
Figures






Similar articles
-
Toxoplasma gondii genotype determines MyD88-dependent signaling in infected macrophages.J Immunol. 2006 Aug 15;177(4):2584-91. doi: 10.4049/jimmunol.177.4.2584. J Immunol. 2006. PMID: 16888020
-
Toxoplasma gondii dense granule protein GRA24 drives MyD88-independent p38 MAPK activation, IL-12 production and induction of protective immunity.PLoS Pathog. 2020 May 15;16(5):e1008572. doi: 10.1371/journal.ppat.1008572. eCollection 2020 May. PLoS Pathog. 2020. PMID: 32413093 Free PMC article.
-
NADPH Oxidase and Guanylate Binding Protein 5 Restrict Survival of Avirulent Type III Strains of Toxoplasma gondii in Naive Macrophages.mBio. 2018 Aug 28;9(4):e01393-18. doi: 10.1128/mBio.01393-18. mBio. 2018. PMID: 30154263 Free PMC article.
-
Toll-like receptors and their role in host resistance to Toxoplasma gondii.Immunol Lett. 2008 Aug 15;119(1-2):17-21. doi: 10.1016/j.imlet.2008.05.007. Epub 2008 Jun 18. Immunol Lett. 2008. PMID: 18617274 Review.
-
From cells to signaling cascades: manipulation of innate immunity by Toxoplasma gondii.FEMS Immunol Med Microbiol. 2003 Dec 5;39(3):193-203. doi: 10.1016/S0928-8244(03)00279-7. FEMS Immunol Med Microbiol. 2003. PMID: 14642303 Review.
Cited by
-
Virulence of Toxoplasma gondii is associated with distinct dendritic cell responses and reduced numbers of activated CD8+ T cells.J Immunol. 2010 Aug 1;185(3):1502-12. doi: 10.4049/jimmunol.0903450. Epub 2010 Jun 30. J Immunol. 2010. PMID: 20592284 Free PMC article.
-
Toll-like receptor initiated host defense against Toxoplasma gondii.J Biomed Biotechnol. 2010;2010:737125. doi: 10.1155/2010/737125. Epub 2009 Nov 11. J Biomed Biotechnol. 2010. PMID: 19911079 Free PMC article. Review.
-
Functional aspects of Toll-like receptor/MyD88 signalling during protozoan infection: focus on Toxoplasma gondii.Clin Exp Immunol. 2009 Apr;156(1):17-24. doi: 10.1111/j.1365-2249.2009.03876.x. Epub 2009 Jan 21. Clin Exp Immunol. 2009. PMID: 19161444 Free PMC article. Review.
-
Effects of Toxoplasma gondii genotype and absence of host MAL/Myd88 on the temporal regulation of gene expression in infected microglial cells.Exp Parasitol. 2011 Dec;129(4):409-13. doi: 10.1016/j.exppara.2011.08.016. Epub 2011 Sep 6. Exp Parasitol. 2011. PMID: 21924265 Free PMC article.
-
Differential gene expression in mice infected with distinct Toxoplasma strains.Infect Immun. 2012 Mar;80(3):968-74. doi: 10.1128/IAI.05421-11. Epub 2011 Dec 5. Infect Immun. 2012. PMID: 22144491 Free PMC article.
References
-
- Aliberti, J., C. Reis e Sousa, M. Schito, S. Hieny, T. Wells, G. B. Huffnage, and A. Sher. 2000. CCR5 provides a signal for microbial induced production of IL-12 by CD8α+ dendritic cells. Nat. Immunol. 1:83-87. - PubMed
-
- Aliberti, J., J. G. Valenzuela, V. B. Carruthers, S. Hieny, J. Andersen, H. Charest, C. Reis e Sousa, A. Fairlamb, J. M. Ribeiro, and A. Sher. 2003. Molecular mimicry of a CCR5 binding-domain in the microbial activation of dendritic cells. Nat. Immunol. 4:485-490. - PubMed
-
- Allen, S. J., S. E. Crown, and T. M. Handel. 2007. Chemokine: receptor structure, interactions, and antagonism. Annu. Rev. Immunol. 25:787-820. - PubMed
-
- Bjorkbacka, H., K. A. Fitzgerald, F. Huet, X. Li, J. A. Gregory, M. A. Lee, C. M. Ordija, N. E. Dowley, D. T. Golenbock, and M. W. Freeman. 2004. The induction of macrophage gene expression by LPS predominantly utilizes MyD88-independent signaling cascades. Physiol. Genomics 19:319-330. - PubMed
-
- Bonecchi, R., G. Bianchi, P. P. Bordignon, D. D'Ambrosio, R. Lang, A. Borsatti, S. Sozzani, P. Allavena, P. A. Gray, A. Mantovani, and F. Sinigaglia. 1998. Differential expression of chemokine receptors and chemotactic responsiveness of type 1 T helper cells (Th1s) and Th2s. J. Exp. Med. 187:129-134. - PMC - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Medical
Molecular Biology Databases