Super learner
- PMID: 17910531
- DOI: 10.2202/1544-6115.1309
Super learner
Abstract
When trying to learn a model for the prediction of an outcome given a set of covariates, a statistician has many estimation procedures in their toolbox. A few examples of these candidate learners are: least squares, least angle regression, random forests, and spline regression. Previous articles (van der Laan and Dudoit (2003); van der Laan et al. (2006); Sinisi et al. (2007)) theoretically validated the use of cross validation to select an optimal learner among many candidate learners. Motivated by this use of cross validation, we propose a new prediction method for creating a weighted combination of many candidate learners to build the super learner. This article proposes a fast algorithm for constructing a super learner in prediction which uses V-fold cross-validation to select weights to combine an initial set of candidate learners. In addition, this paper contains a practical demonstration of the adaptivity of this so called super learner to various true data generating distributions. This approach for construction of a super learner generalizes to any parameter which can be defined as a minimizer of a loss function.
Similar articles
-
Super Learner for Survival Data Prediction.Int J Biostat. 2020 Feb 22:/j/ijb.ahead-of-print/ijb-2019-0065/ijb-2019-0065.xml. doi: 10.1515/ijb-2019-0065. Online ahead of print. Int J Biostat. 2020. PMID: 32097120
-
Super learning: an application to the prediction of HIV-1 drug resistance.Stat Appl Genet Mol Biol. 2007;6:Article7. doi: 10.2202/1544-6115.1240. Epub 2007 Feb 23. Stat Appl Genet Mol Biol. 2007. PMID: 17402922 Free PMC article.
-
Stacked generalization: an introduction to super learning.Eur J Epidemiol. 2018 May;33(5):459-464. doi: 10.1007/s10654-018-0390-z. Epub 2018 Apr 10. Eur J Epidemiol. 2018. PMID: 29637384 Free PMC article. Review.
-
Investigation of Super Learner Methodology on HIV-1 Small Sample: Application on Jaguar Trial Data.AIDS Res Treat. 2012;2012:478467. doi: 10.1155/2012/478467. Epub 2012 Apr 3. AIDS Res Treat. 2012. PMID: 22550568 Free PMC article.
-
Mortality Prediction in the ICU Based on MIMIC-II Results from the Super ICU Learner Algorithm (SICULA) Project.2016 Sep 10. In: MIT Critical Data, editor. Secondary Analysis of Electronic Health Records [Internet]. Cham (CH): Springer; 2016. Chapter 20. 2016 Sep 10. In: MIT Critical Data, editor. Secondary Analysis of Electronic Health Records [Internet]. Cham (CH): Springer; 2016. Chapter 20. PMID: 31314257 Free Books & Documents. Review.
Cited by
-
The obesity paradox in critically ill patients: a causal learning approach to a casual finding.Crit Care. 2020 Aug 5;24(1):485. doi: 10.1186/s13054-020-03199-5. Crit Care. 2020. PMID: 32758295 Free PMC article.
-
Optimal Individualized Treatments in Resource-Limited Settings.Int J Biostat. 2016 May 1;12(1):283-303. doi: 10.1515/ijb-2015-0007. Int J Biostat. 2016. PMID: 27227725 Free PMC article.
-
Flexible model selection for mechanistic network models.J Complex Netw. 2020 Apr;8(2):cnz024. doi: 10.1093/comnet/cnz024. Epub 2019 Aug 2. J Complex Netw. 2020. PMID: 32765880 Free PMC article.
-
Combining parametric, semi-parametric, and non-parametric survival models with stacked survival models.Biostatistics. 2015 Jul;16(3):537-49. doi: 10.1093/biostatistics/kxv001. Epub 2015 Feb 5. Biostatistics. 2015. PMID: 25662068 Free PMC article.
-
Targeted Learning of the Mean Outcome under an Optimal Dynamic Treatment Rule.J Causal Inference. 2015 Mar;3(1):61-95. doi: 10.1515/jci-2013-0022. J Causal Inference. 2015. PMID: 26236571 Free PMC article.
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources