The necessary junk: new functions for transposable elements
- PMID: 17911158
- DOI: 10.1093/hmg/ddm196
The necessary junk: new functions for transposable elements
Abstract
Transposable elements have been shaping the genome throughout evolution, contributing to the creation of new genes and sophisticated regulatory network systems. Today, most of genomes (animals and plants) allow the expression and accommodate transposition of a few transposon families. The potential genetic impact of this small fraction of mobile elements should not be underestimated. Although new insertions that happen in germ cells are likely to be passed to the next generation, mobilization in pluripotent embryonic stem cells or in somatic cells may contribute to the differences observed in genetic makeup and epigenetic gene regulation during development at the cellular level. The fact that these elements are still active, generating innovative ways to alter gene expression and genomic structure, suggests that the cellular genome is not static or deterministic but rather dynamic. In this short review, we collect a set of recent observations that point to a new appreciation of transposable elements as a source of genetic variation.
Similar articles
-
Transposable elements in gene regulation and in the evolution of vertebrate genomes.Curr Opin Genet Dev. 2009 Dec;19(6):607-12. doi: 10.1016/j.gde.2009.10.013. Epub 2009 Nov 13. Curr Opin Genet Dev. 2009. PMID: 19914058 Review.
-
Combinatorial epigenetics, "junk DNA", and the evolution of complex organisms.Gene. 2007 Apr 1;390(1-2):232-42. doi: 10.1016/j.gene.2006.12.001. Epub 2006 Dec 9. Gene. 2007. PMID: 17223284 Review.
-
Genetic differences between humans and great apes.Mol Phylogenet Evol. 2001 Jan;18(1):2-13. doi: 10.1006/mpev.2000.0799. Mol Phylogenet Evol. 2001. PMID: 11161737 Review.
-
Genomics. Not junk after all.Science. 2003 May 23;300(5623):1246-7. doi: 10.1126/science.1085690. Science. 2003. PMID: 12764185 No abstract available.
-
Transposable elements, gene creation and genome rearrangement in flowering plants.Curr Opin Genet Dev. 2005 Dec;15(6):621-7. doi: 10.1016/j.gde.2005.09.010. Epub 2005 Oct 10. Curr Opin Genet Dev. 2005. PMID: 16219458 Review.
Cited by
-
The spatial and temporal dynamics of nuclear RNAi-targeted retrotransposon transcripts in Caenorhabditis elegans.Development. 2018 Oct 22;145(20):dev167346. doi: 10.1242/dev.167346. Development. 2018. PMID: 30254142 Free PMC article.
-
Large-scale analysis of exonized mammalian-wide interspersed repeats in primate genomes.Hum Mol Genet. 2009 Jun 15;18(12):2204-14. doi: 10.1093/hmg/ddp152. Epub 2009 Mar 26. Hum Mol Genet. 2009. PMID: 19324900 Free PMC article.
-
Environmental stress and transposon transcription in the mammalian brain.Mob Genet Elements. 2013 Mar 1;3(2):e24555. doi: 10.4161/mge.24555. Mob Genet Elements. 2013. PMID: 23914311 Free PMC article.
-
A Deluge of Complex Repeats: The Solanum Genome.PLoS One. 2015 Aug 4;10(8):e0133962. doi: 10.1371/journal.pone.0133962. eCollection 2015. PLoS One. 2015. PMID: 26241045 Free PMC article.
-
Flexibility in MuA transposase family protein structures: functional mapping with scanning mutagenesis and sequence alignment of protein homologues.PLoS One. 2012;7(5):e37922. doi: 10.1371/journal.pone.0037922. Epub 2012 May 29. PLoS One. 2012. PMID: 22666413 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources