Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2007 Dec;13(6):626-38.
doi: 10.1177/1073858407303536. Epub 2007 Oct 2.

Amyloid precursor protein and mitochondrial dysfunction in Alzheimer's disease

Affiliations
Review

Amyloid precursor protein and mitochondrial dysfunction in Alzheimer's disease

Hindupur K Anandatheerthavarada et al. Neuroscientist. 2007 Dec.

Abstract

Growing evidence suggests that mitochondrial dysfunction is one of the key intracellular lesions associated with the pathogenesis of Alzheimer's disease (AD). Mitochondria, the powerhouses of the cell, participate in a number of physiological functions that include calcium homeostasis, signal transduction, and apoptosis. However, the pathophysiological mechanisms underlying the decline of mitochondrial vital functions leading to the dysfunction of mitochondria during AD are not well understood. Recent literature has observed the accumulation of Alzheimer's amyloid precursor protein (APP) and its C-terminal-cleaved product beta-amyloid (Abeta) in the mitochondrial compartment. Furthermore, evidence also implicates that the accumulation of full-length APP and Abeta in the mitochondrial compartment has a causative role in impairing mitochondrial physiological functions. Here, we review the mode of mitochondrial transport of full-length APP and Abeta and its pathological implications in bringing about mitochondrial dysfunction as seen in AD.

PubMed Disclaimer

Publication types

MeSH terms

Substances

LinkOut - more resources