Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007 Oct;6(10):2777-85.
doi: 10.1158/1535-7163.MCT-07-0374. Epub 2007 Oct 3.

Synergistic cytotoxicity between tamoxifen and the plant toxin persin in human breast cancer cells is dependent on Bim expression and mediated by modulation of ceramide metabolism

Affiliations

Synergistic cytotoxicity between tamoxifen and the plant toxin persin in human breast cancer cells is dependent on Bim expression and mediated by modulation of ceramide metabolism

Caroline G Roberts et al. Mol Cancer Ther. 2007 Oct.

Abstract

Phytochemicals have provided an abundant source of novel therapeutics for the treatment of human cancers. We have previously described a novel plant toxin, persin, derived from avocado leaves, which has unique in vivo actions in the mammary epithelium and Bim-dependent, cytotoxic effects in human breast cancer cells in vitro. Compounds structurally similar to persin, such as the polyunsaturated fatty acid, conjugated linoleic acid, can attenuate steroid hormone receptor signaling and modulate the response of breast cancer cells to antiestrogens. Here, we provide evidence that persin may have similar effects by showing its potent proapoptotic synergy with the antiestrogen 4-hydroxytamoxifen. However, although persin transcriptionally down-regulates estrogen receptor (ER) expression, unlike conjugated linoleic acid, it also shows efficacy in ER-negative breast cancer cells, both alone and in combination with 4-hydroxytamoxifen, whereas normal breast epithelial cells are unaffected, suggesting it may act via a distinct, ER-independent mechanism. These proapoptotic synergistic interactions are associated with increased de novo ceramide synthesis and are dependent on expression of the proapoptotic protein Bim. These data show that persin should be further investigated as a potential novel cancer therapeutic agent because it significantly enhances the sensitivity of breast cancer cells to the cytotoxic effects of tamoxifen, regardless of their ER status, while displaying apparent specificity for the malignant phenotype.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources