Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007 Oct 25;111(42):10517-29.
doi: 10.1021/jp073727j. Epub 2007 Oct 3.

Pump-degenerate four wave mixing as a technique for analyzing structural and electronic evolution: multidimensional time-resolved dynamics near a conical intersection

Affiliations

Pump-degenerate four wave mixing as a technique for analyzing structural and electronic evolution: multidimensional time-resolved dynamics near a conical intersection

Jürgen Hauer et al. J Phys Chem A. .

Abstract

Pump-degenerate four wave mixing (pump-DFWM) is used to simultaneously study the early events in structural and electronic population dynamics of the non-adiabatic passage between two excited electronic states. After the precursor state S2 is populated by an initial pump beam, a DFWM sequence is set resonant with the S1 --> Sn transition on the successor state S1. The information obtained by pump-DFWM is two-fold: by scanning the delay between the initial pump and the DFWM sequence, the evolution of the individual excited-state modes is observed with a temporal resolution of 20 fs and a spectral resolution of 10 cm-1. Additionally, pump-DFWM yields information on electronic population dynamics, resulting in a comprehensive description of the S2 --> S1 internal conversion. As a system in which the interplay between structural and electronic evolution is of great interest, all-trans-beta-carotene in solution was chosen. The pump-DFWM signal is analyzed for different detection wavelengths, yielding results on the ultrafast dynamics between 1Bu+ (S2) and 2Ag- (S1). The process of vibrational cooling on S1 is discussed in detail. Furthermore, a low-lying vibrationally hot state is excited and characterized in its spectroscopic properties. The combination of highly resolved vibrational dynamics and simultaneously detected ultrafast electronic state spectroscopy gives a complete picture of the dynamics near a conical intersection. Because pump-DFWM is a pure time domain technique, it offers the prospect of coherent control of excited-state dynamics on an ultrafast time scale.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources