Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007 Nov;13(11):2625-32.
doi: 10.1089/ten.2007.0017.

Long-term maintenance of neuronally differentiated human adipose tissue-derived stem cells

Affiliations

Long-term maintenance of neuronally differentiated human adipose tissue-derived stem cells

Sanjay Dhar et al. Tissue Eng. 2007 Nov.

Abstract

Recent studies reporting differentiation of early neural progenitors of human adipose tissue-derived stromal cells (ADSCs) has aroused interest among investigators for regenerative medicine. The aim of this study was to investigate the differentiation of ADSCs to neuron-like cells and to extend the life span of these differentiated ADSCs in vitro using our new DE-1 medium. After primary culture and expansion, ADSCs were incubated in a new long-term neuronal induction medium that maintains ADSCs in a differentiated state for 8 weeks. Neuronal differentiation was identified using immunocytochemistry, reverse-transcriptase polymerase chain reaction, and Western blotting. We found that the optimal differentiation protocol induced the ADSCs to express early neuronal markers, including nestin and neuronal nuclear antigen (NeuN), as well as the mature astrocyte marker glial fibrillary acidic protein (GFAP). Neuronal morphological characteristics were recognized in approximately 40% to 50% of the cell populations maintained over 8 weeks, and 60% to 80% of the differentiated cells expressed neuronal specific markers, including nestin, GFAP, NeuN, Trk-A, vimentin, and neuron-specific enolase. The data show that our DE-1 medium is capable of achieving a greater number of differentiated ADSCs for a longer period of time. This result bodes well for the application of ADSCs in in vivo peripheral nerve regeneration.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms

LinkOut - more resources