Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007 Nov;43(5):571-9.
doi: 10.1016/j.yjmcc.2007.08.008. Epub 2007 Aug 22.

Sirt1 modulates premature senescence-like phenotype in human endothelial cells

Affiliations

Sirt1 modulates premature senescence-like phenotype in human endothelial cells

Hidetaka Ota et al. J Mol Cell Cardiol. 2007 Nov.

Abstract

Yeast Sir2 plays critical roles in gene silencing, stress resistance and longevity. Mammalian Sirt1 NAD(+)-dependent protein deacetylase, the closest homolog of Sir2, regulates cell cycle, cellular senescence, apoptosis and metabolism, by functional interactions with a number of biological molecules such as p53. To investigate a role of Sirt1 in endothelial dysfunction and premature senescence, we examined the effects of Sirt1 inhibition in human umbilical vein endothelial cells (HUVEC). Sirt1 inhibition by sirtinol, which is a 2-hydroxy-1-napthaldehyde derivative, or siRNA for Sirt1-induced premature senescence-like phenotype, as judged by increased senescence-associated beta-galactosidase (SA-beta-gal) activity, sustained growth arrest and enlarged and flattened cell morphology at 10 days after the treatment. Sixty-four percent of sirtinol (60 mumol/L)-treated HUVEC was SA-beta-gal-positive, whereas only 17% of vehicle-treated cells were positive. Sirt1 inhibition by sirtinol or Sirt1 siRNA increased PAI-1 expression and decreased both protein expression and activity of eNOS. Treatment with sirtinol or Sirt1 siRNA increased acetylation of p53, while p53 expression was unaltered. Impaired epidermal growth factor-induced activation of mitogen-activated protein kinases was associated with Sirt1 inhibition-induced senescence-like growth arrest. Conversely, overexpression of Sirt1 prevented hydrogen peroxide-induced SA-beta-gal activity, morphological changes and deranged expression of PAI-1 and eNOS. These results showed that Sirt1 inhibition increased p53 acetylation and induced premature senescence-like phenotype in parallel with increased PAI-1 and decreased eNOS expression. Our data suggest that Sirt1 may exert protective effects against endothelial dysfunction by preventing stress-induced premature senescence and deranged expression of PAI-1 and eNOS.

PubMed Disclaimer

Publication types