Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007 Dec;27(12):2627-33.
doi: 10.1161/ATVBAHA.107.155762. Epub 2007 Oct 4.

Rosiglitazone reduces glucose-induced oxidative stress mediated by NAD(P)H oxidase via AMPK-dependent mechanism

Affiliations

Rosiglitazone reduces glucose-induced oxidative stress mediated by NAD(P)H oxidase via AMPK-dependent mechanism

Giulio Ceolotto et al. Arterioscler Thromb Vasc Biol. 2007 Dec.

Abstract

Objective: Hyperglycemia is the main determinant of long-term diabetic complications, mainly through induction of oxidative stress. NAD(P)H oxidase is a major source of glucose-induced oxidative stress. In this study, we tested the hypothesis that rosiglitazone (RSG) is able to quench oxidative stress initiated by high glucose through prevention of NAD(P)H oxidase activation.

Methods and results: Intracellular ROS were measured using the fluoroprobe TEMPO-9-AC in HUVECs exposed to control (5 mmol/L) and moderately high (10 mmol/L) glucose concentrations. NAD(P)H oxidase and AMPK activities were determined by Western blot. We found that 10 mmol/L glucose increased significantly ROS production in comparison with 5 mmol/L glucose, and that this effect was completely abolished by RSG. Interestingly, inhibition of AMPK, but not PPARgamma, prevented this effect of RSG. AMPK phosphorylation by RSG was necessary for its ability to hamper NAD(P)H oxidase activation, which was indispensable for glucose-induced oxidative stress. Downstream of AMPK activation, RSG exerts antioxidative effects by inhibiting PKC.

Conclusions: This study demonstrates that RSG activates AMPK which, in turn, prevents hyperactivity of NAD(P)H oxidase induced by high glucose, possibly through PKC inhibition. Therefore, RSG protects endothelial cells against glucose-induced oxidative stress with an AMPK-dependent and a PPARgamma-independent mechanism.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

Substances

LinkOut - more resources