Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2008 Jan 15;372(2):198-203.
doi: 10.1016/j.ab.2007.08.016. Epub 2007 Aug 19.

A quantitative chemiluminescent method for studying replicative and stress-induced premature senescence in cell cultures

Affiliations

A quantitative chemiluminescent method for studying replicative and stress-induced premature senescence in cell cultures

Vinícius Bassaneze et al. Anal Biochem. .

Abstract

beta-Galactosidase (beta-Gal) activity is a widely accepted biomarker to detect senescence both in situ and in vitro. A cytochemical assay based on production of a blue-dyed precipitate that results from the cleavage of the chromogenic substrate X-Gal is commonly used. Blue and nonblue cells are counted under the microscope and a semiquantitative percentage of senescent cells can be obtained. Here, we present a quantitative, fast, and easy to use chemiluminescent assay to detect senescence. The Galacton chemiluminescent method used to detect the prokaryotic beta-Gal reporter enzyme in transfection studies was adapted to assay mammalian beta-Gal. The assay showed linear production of luminescence in a time- and cell-number-dependent manner. The chemiluminescent assay showed significant correlation with the cytochemical assay in detecting replicative senescence (Pearson r=0.8486, p<0.005). Moreover, the chemiluminescent method (Galacton) also detected stress-induced senescence in cells treated with H2O2 similar to the cytochemical assay (X-Gal) (Galacton: control 25,207.3+/-6548.6, H2O2 52,487.4+/-16,284.9, p<0.05; X-Gal: control 41.31+/-7.0%, H2O2 92.97+/-2.8%, p<0.01). Thus, our method is well suited to the detection of replicative and stress-induced senescence in cell culture.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources