Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2007 Nov;37(6):470-6.
doi: 10.1053/j.semnuclmed.2007.08.003.

18F-Fluoroestradiol

Affiliations
Review

18F-Fluoroestradiol

Lavanya Sundararajan et al. Semin Nucl Med. 2007 Nov.

Abstract

Estrogen receptor (ER) expression is an important determinant of breast cancer behavior and is critical for response to endocrine therapies such as tamoxifen and aromatase inhibitors. In current practice, ER expression is determined by assay of biopsy material. In more advanced disease, tissue assay may present practical difficulties and be associated with significant sampling error. This and other considerations motivated the development of ER imaging agents for positron emission tomography (PET), of which the most successful has been (18)F-16alpha-17beta-fluoroestradiol (FES). In this review, we highlight aspects of ER biology and the importance of the ER in breast cancer therapy; review the structure and synthesis of FES; describe its kinetics and safety/dosimetry data; and highlight validation studies. Also discussed are early results in patients using FES-PET to localize ER-expressing tumors and associated data pointing toward its accuracy as a predictive assay for breast cancer endocrine therapy. Finally, early data for tumors and sites other than breast cancer are mentioned. Preliminary data strongly point toward potential clinical utility for FES-PET, motivating further validation and future clinical trials with prospective endpoints tested under appropriate regulatory oversight.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources