Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007 Oct;210(Pt 20):3547-58.
doi: 10.1242/jeb.006924.

Natural variation in food acquisition mediated via a Drosophila cGMP-dependent protein kinase

Affiliations

Natural variation in food acquisition mediated via a Drosophila cGMP-dependent protein kinase

Karla R Kaun et al. J Exp Biol. 2007 Oct.

Abstract

In natural environments where food abundance and quality can change drastically over time, animals must continuously alter their food acquisition strategies. Although genetic variation contributes to this plasticity, the specific genes involved and their interactions with the environment are poorly understood. Here we report that natural variation in the Drosophila gene, foraging (for), which encodes a cGMP-dependent protein kinase (PKG), affects larval food acquisition in an environmentally dependent fashion. When food is plentiful, the wild-type rover (for(R)) allele confers lower food intake and higher glucose absorption than both the wild-type sitter (for(s)) allele and the mutant for(s2) allele. When food is scarce, for(R), for(s) and for(s2) larvae increase food intake to a common maximal level, but for(R) larvae retain their increased absorption efficiency. Changes in for expression can induce corrective behavioral modifications in response to food deprivation. When reared in environments with low food levels, for(R) larvae have higher survivorship and faster development than for(s) and for(s2) larvae. Together, these results show that natural variation in for has far reaching implications affecting a suite of phenotypes involved in the regulation of food acquisition.

PubMed Disclaimer

Publication types

Substances

LinkOut - more resources