Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2007 Dec;293(6):H3643-9.
doi: 10.1152/ajpheart.01357.2006. Epub 2007 Oct 5.

Impaired activation of ATP-sensitive K+ channels in endocardial myocytes from left ventricular hypertrophy

Affiliations
Free article
Comparative Study

Impaired activation of ATP-sensitive K+ channels in endocardial myocytes from left ventricular hypertrophy

Junichi Shimokawa et al. Am J Physiol Heart Circ Physiol. 2007 Dec.
Free article

Abstract

ATP-sensitive K(+) (K(ATP)) channels are essential for maintaining the cellular homeostasis against metabolic stress. Myocardial remodeling in various pathologies may alter this adaptive response to such stress. It was reported that transmural electrophysiological heterogeneity exists in ventricular myocardium. Therefore, we hypothesized that the K(ATP) channel properties might be altered in hypertrophied myocytes from endocardium. To test this hypothesis, we determined the K(ATP) channel currents using the perforated patch-clamp technique, open cell-attached patches, and excised inside-out patches in both endocardial and epicardial myocytes isolated from hypertrophied [spontaneous hypertensive rats (SHR)] vs. normal [Wistar-Kyoto rats (WKY)] left ventricle. In endocardial cells, K(ATP) channel currents (I(K,ATP)), produced by 2 mM CN(-) and no glucose at 0 mV, were significantly smaller (P < 0.01), and time required to reach peak currents after onset of K(ATP) channel opening (Time(onset to peak)) was significantly longer (319 +/- 46 vs. 177 +/- 37 s, P = 0.01) in the SHR group (n = 9) than the WKY group (n = 13). However, in epicardial cells, there were no differences in I(K,ATP) and Time(onset to peak) between the groups (SHR, n = 12; WKY, n = 12). The concentration-open probability-response curves obtained during the exposure of open cells and excised patches to exogenous ATP revealed the impaired K(ATP) channel activation in endocardial myocytes from SHR. In conclusion, K(ATP) channel activation under metabolic stress was impaired in endocardial cells from rat hypertrophied left ventricle. The deficit of endocardial K(ATP) channels to decreased intracellular ATP might contribute to the maladaptive response of hypertrophied hearts to ischemia.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources