Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007 Dec;22(12):3148-58.
doi: 10.1093/humrep/dem310. Epub 2007 Oct 6.

Estrogen metabolizing enzymes in endometrium and endometriosis

Affiliations

Estrogen metabolizing enzymes in endometrium and endometriosis

H Dassen et al. Hum Reprod. 2007 Dec.

Abstract

Background: Estradiol (E(2)) is an important promoter of the growth of both eutopic and ectopic endometrium. The findings with regard to the expression and activity of steroidogenic enzymes in endometrium of controls, in endometrium of endometriosis patients and in endometriotic lesions are not consistent.

Methods: In this study, we have looked at the mRNA expression and protein levels of a range of steroidogenic enzymes [aromatase, 17beta-hydroxysteroid dehydrogenases (17beta-HSD) type 1, 2 and 4, estrogen sulfotransferase (EST) and steroid sulfatase (STS)] in eutopic and ectopic endometrium of patients (n = 14) with deep-infiltrative endometriosis as well as in disease-free endometrium (n = 48) using real-time PCR and immunocytochemistry. In addition, we evaluated their menstrual cycle-related expression patterns, and investigated their steroid responsiveness in explant cultures.

Results: Aromatase and 17beta-HSD type 1 mRNA levels were extremely low in normal human endometrium, while mRNAs for types 2 and 4 17beta-HSD, EST and STS were readily detectable. Only 17beta-HSD type 2 and EST genes showed sensitivity to progesterone in normal endometrium. Types 1 and 2 17beta-HSD and STS protein was detected in normal endometrium using new polyclonal antibodies.

Conclusions: In endometriosis lesions, the balance is tilted in favor of enzymes producing E(2). This is due to a suppression of types 2 and 4 17beta-HSD, and an increased expression of aromatase and type 1 17beta-HSD in ectopic endometrium.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms