Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2008 Feb-Mar;95(2-3):169-74.
doi: 10.1007/s11120-007-9264-z. Epub 2007 Oct 9.

Structure and organization of phycobilisomes on membranes of the red alga Porphyridium cruentum

Affiliations

Structure and organization of phycobilisomes on membranes of the red alga Porphyridium cruentum

Ana A Arteni et al. Photosynth Res. 2008 Feb-Mar.

Abstract

In the present work, electron microscopy and single particle averaging was performed to investigate the supramolecular architecture of hemiellipsoidal phycobilisomes from the unicellular red alga Porphyridium cruentum. The dimensions were measured as 60 x 41 x 34 nm (length x width x height) for randomly ordered phycobilisomes, seen under high-light conditions. The hemiellipsoidal phycobilisomes were found to have a relatively flexible conformation. In closely packed semi-crystalline arrays, observed under low-light conditions, the width is reduced to 31 or 35 nm, about twice the width of the phycobilisome of the cyanobacterium Synechocystis sp. PCC 6803. Since the latter size matches the width of dimeric PSII, we suggest that one PBS lines up with one PSII dimer in cyanobacteria. In red algae, a similar 1:1 ratio under low-light conditions may indicate that the red algal phycobilisome is enlarged by a membrane-bound peripheral antenna which is absent in cyanobacteria.

PubMed Disclaimer

Figures

Fig. 1
Fig. 1
Typical examples of negatively stained cyanobacterial membranes and associated phycobilisomes showing multiple ordered 2-D arrays under low-light conditions (left frame) and a random distributiom under high-light conditions (right frame) and the space bar equals 1 μm for the left frame and 400 nm for the right frame
Fig. 2
Fig. 2
Single particle electron microscopy of phycobilisome projections from Porphyridium cruentum (A) View in the membrane plane of membrane-bound phycobilisomes (B) View in the membrane plane of free phycobilisomes (CE) side views of free phycobilisomes. (F) Most common phycobilisome fragment. (G) image of A with 2-fold rotational symmetry imposed after analysis (H) Image of C, with mirror symmetry imposed after analysis. The number of summed projections for A-F is 1520, 484, 4096, 380, 499 and 746, respectively. The space bar is 25 nm
Fig. 3
Fig. 3
Comparison of semi-crystalline arrays of phycobilisomes. (A) the membrane-attached phycobilisome (B) APC core structure of Synechocystis PCC 6803 ck mutant, sum of 5019 projections for comparison (A.A. Arteni, R. Ajlani, E.J. Boekema, unpublished results). (C) 2D array with semi-crystalline phycobilisomes, an average of 11 fragments (D) 2D array with semi-crystalline phycobilisomes, an average of 107 fragments (E) PSII dimer (from Thermosynechococcus elongatus) (F) PSII double dimer, found after solubilization of membranes with dodecyl maltoside, a sum of 59 projections (G) PSII double dimer, found after solubilization of membranes with digitonin, a sum of 46 projections. The space bar is 50 nm

References

    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.1007/s11120-004-2143-y', 'is_inner': False, 'url': 'https://doi.org/10.1007/s11120-004-2143-y'}, {'type': 'PubMed', 'value': '15977057', 'is_inner': True, 'url': 'https://pubmed.ncbi.nlm.nih.gov/15977057/'}]}
    2. Adir N (2005) Elucidation of the molecular structures of components of the phycobilisome: reconstructing a giant. Photosynth Res 85:15–32 - PubMed
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.1023/B:PRES.0000015399.43503.95', 'is_inner': False, 'url': 'https://doi.org/10.1023/b:pres.0000015399.43503.95'}, {'type': 'PubMed', 'value': '16228392', 'is_inner': True, 'url': 'https://pubmed.ncbi.nlm.nih.gov/16228392/'}]}
    2. Aspinwall CL, Sarcina M, Mullineaux CW (2004) Phycobilisome mobility in the cyanobacterium Synechococcus sp PCC7942 is influenced by the trimerisation of Photosystem I. Photosynth Res 79:179–187 - PubMed
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.1007/BF00117661', 'is_inner': False, 'url': 'https://doi.org/10.1007/bf00117661'}, {'type': 'PubMed', 'value': '24271608', 'is_inner': True, 'url': 'https://pubmed.ncbi.nlm.nih.gov/24271608/'}]}
    2. Bald D, Kruip J, Rögner M (1996) Supramolecular architecture of cyanobacterial thylakoid membranes: how is the phycobilisome connected with the photosystems? Photosynth Res 49:103–118 - PubMed
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.1039/b300063j', 'is_inner': False, 'url': 'https://doi.org/10.1039/b300063j'}, {'type': 'PubMed', 'value': '12803076', 'is_inner': True, 'url': 'https://pubmed.ncbi.nlm.nih.gov/12803076/'}]}
    2. Barber J, Morris EP, da Fonseca PCA (2003) Interaction of the allophycocyanin core complex with photosystem II. Photochem Photobiol Sci 2:536–541 - PubMed
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'PubMed', 'value': '9165067', 'is_inner': True, 'url': 'https://pubmed.ncbi.nlm.nih.gov/9165067/'}]}
    2. Betz M (1997) One century of protein crystallography: the phycobiliproteins. Biol Chem 378:167–176 - PubMed

Publication types

MeSH terms