Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007 Oct 5;3(10):1374-9.
doi: 10.1371/journal.ppat.0030133.

Growth of H5N1 influenza A viruses in the upper respiratory tracts of mice

Affiliations

Growth of H5N1 influenza A viruses in the upper respiratory tracts of mice

Masato Hatta et al. PLoS Pathog. .

Abstract

Highly pathogenic avian H5N1 influenza A viruses have spread throughout Asia, Europe, and Africa, raising serious worldwide concern about their pandemic potential. Although more than 250 people have been infected with these viruses, with a consequent high rate of mortality, the molecular mechanisms responsible for the efficient transmission of H5N1 viruses among humans remain elusive. We used a mouse model to examine the role of the amino acid at position 627 of the PB2 viral protein in efficient replication of H5N1 viruses in the mammalian respiratory tract. Viruses possessing Lys at position 627 of PB2 replicated efficiently in lungs and nasal turbinates, as well as in cells, even at the lower temperature of 33 degrees C. Those viruses possessing Glu at this position replicated less well in nasal turbinates than in lungs, and less well in cells at the lower temperature. These results suggest that Lys at PB2-627 confers to avian H5N1 viruses the advantage of efficient growth in the upper and lower respiratory tracts of mammals. Therefore, efficient viral growth in the upper respiratory tract may provide a platform for the adaptation of avian H5N1 influenza viruses to humans and for efficient person-to-person virus transmission, in the context of changes in other viral properties including specificity for human (sialic acid alpha-2,6-galactose containing) receptors.

PubMed Disclaimer

Conflict of interest statement

Competing interests. The authors have declared that no competing interests exist.

Figures

Figure 1
Figure 1. Growth Properties of Viruses at Different Temperatures in Diverse Cell Types
(A) VN1203 (red) and VN1204 (green) viruses. (B) VN1204 (green) and VN1204PB2-627Lys (orange) viruses. Cells were infected with virus at a multiplicity of infection of 10−5 and incubated at 33, 37, or 41 °C. Aliquots of the supernatants were titrated on MDCK cells by plaque assay. The values are means (± standard deviation) of three independent determinations.

Similar articles

Cited by

References

    1. Subbarao K, Klimov A, Katz J, Regnery H, Lim W, et al. Characterization of an avian influenza A (H5N1) virus isolated from a child with a fatal respiratory illness. Science. 1998;279:393–396. - PubMed
    1. Claas EC, Osterhaus AD, van BR, De Jong JC, Rimmelzwaan GF, et al. Human influenza A H5N1 virus related to a highly pathogenic avian influenza virus. Lancet. 1998;351:472–477. - PubMed
    1. de Jong JC, Claas EC, Osterhaus AD, Webster RG, Lim WL. A pandemic warning? Nature. 1997;389:554. - PMC - PubMed
    1. World Health Organization. Cumulative Number of Confirmed Human Cases of Avian Influenza A/(H5N1) Reported to WHO, 2 April 2007. Geneva: World Health Organization; 2007.
    1. Matrosovich M, Tuzikov A, Bovin N, Gambaryan A, Klimov A, et al. Early alterations of the receptor-binding properties of H1, H2, and H3 avian influenza virus hemagglutinins after their introduction into mammals. J Virol. 2000;74:8502–8512. - PMC - PubMed

Publication types

Substances