StabilimaxNZ) versus simulated fusion: evaluation of adjacent-level effects
- PMID: 17924151
- PMCID: PMC2140135
- DOI: 10.1007/s00586-007-0444-5
StabilimaxNZ) versus simulated fusion: evaluation of adjacent-level effects
Abstract
Rationale behind motion preservation devices is to eliminate the accelerated adjacent-level effects (ALE) associated with spinal fusion. We evaluated multidirectional flexibilities and ALEs of StabilimaxNZ and simulated fusion applied to a decompressed spine. StabilimaxNZ was applied at L4-L5 after creating a decompression (laminectomy of L4 plus bilateral medial facetectomy at L4-L5). Multidirectional Flexibility and Hybrid tests were performed on six fresh cadaveric human specimens (T12-S1). Decompression increased average flexion-extension rotation to 124.0% of the intact. StabilimaxNZ and simulated fusion decreased the motion to 62.4 and 23.8% of intact, respectively. In lateral bending, corresponding increase was 121.6% and decreases were 57.5 and 11.9%. In torsion, corresponding increase was 132.7%, and decreases were 36.3% for fusion, and none for StabilimaxNZ ALE was defined as percentage increase over the intact. The ALE at L3-4 was 15.3% for StabilimaxNZ versus 33.4% for fusion, while at L5-S1 the ALE were 5.0% vs. 11.3%, respectively. In lateral bending, the corresponding ALE values were 3.0% vs. 19.1%, and 11.3% vs. 35.8%, respectively. In torsion, the corresponding values were 3.7% vs. 20.6%, and 4.0% vs. 33.5%, respectively. In conclusion, this in vitro study using Flexibility and Hybrid test methods showed that StabilimaxNZ stabilized the decompressed spinal level effectively in sagittal and frontal planes, while allowing a good portion of the normal rotation, and concurrently it did not produce significant ALEs as compared to the fusion. However, it did not stabilize the decompressed specimen in torsion.
Figures





Similar articles
-
Transforaminal lumbar interbody fusion: the effect of various instrumentation techniques on the flexibility of the lumbar spine.Spine (Phila Pa 1976). 2004 Feb 15;29(4):E65-70. doi: 10.1097/01.brs.0000113034.74567.86. Spine (Phila Pa 1976). 2004. PMID: 15094547
-
Multidirectional testing of one- and two-level ProDisc-L versus simulated fusions.Spine (Phila Pa 1976). 2007 May 20;32(12):1311-9. doi: 10.1097/BRS.0b013e318059af6f. Spine (Phila Pa 1976). 2007. PMID: 17515820
-
Hybrid dynamic stabilization: a biomechanical assessment of adjacent and supraadjacent levels of the lumbar spine.J Neurosurg Spine. 2012 Sep;17(3):232-42. doi: 10.3171/2012.6.SPINE111054. Epub 2012 Jul 27. J Neurosurg Spine. 2012. PMID: 22839756
-
Biomechanics of posterior dynamic stabilizing device (DIAM) after facetectomy and discectomy.Spine J. 2006 Nov-Dec;6(6):714-22. doi: 10.1016/j.spinee.2006.02.003. Spine J. 2006. PMID: 17088203
-
New progress in adjacent segment degeneration/disease.Orthop Surg. 2010 Aug;2(3):182-6. doi: 10.1111/j.1757-7861.2010.00084.x. Orthop Surg. 2010. PMID: 22009946 Free PMC article. Review.
Cited by
-
Non-fusion instrumentation of the lumbar spine with a hinged pedicle screw rod system: an in vitro experiment.Eur Spine J. 2009 Oct;18(10):1478-85. doi: 10.1007/s00586-009-1052-3. Epub 2009 Jun 6. Eur Spine J. 2009. PMID: 19504129 Free PMC article.
-
The effect of design parameters of dynamic pedicle screw systems on kinematics and load bearing: an in vitro study.Eur Spine J. 2011 Feb;20(2):297-307. doi: 10.1007/s00586-010-1620-6. Epub 2010 Nov 26. Eur Spine J. 2011. PMID: 21110209 Free PMC article.
-
Hybrid Instrumentation in Lumbar Spinal Fusion: A Biomechanical Evaluation of Three Different Instrumentation Techniques.Global Spine J. 2017 Feb;7(1):47-53. doi: 10.1055/s-0036-1583945. Epub 2017 Feb 1. Global Spine J. 2017. PMID: 28451509 Free PMC article.
-
Biomechanical evaluation of a posterior non-fusion instrumentation of the lumbar spine.Eur Spine J. 2012 May;21(5):939-45. doi: 10.1007/s00586-011-2121-y. Epub 2011 Dec 20. Eur Spine J. 2012. PMID: 22205112 Free PMC article.
-
Biomechanical analysis of cervical range of motion and facet contact force after a novel artificial cervical disc replacement.Am J Transl Res. 2019 Oct 15;11(10):6699-6700. eCollection 2019. Am J Transl Res. 2019. PMID: 31737220 Free PMC article. No abstract available.
References
-
- {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.1097/00007632-199011010-00011', 'is_inner': False, 'url': 'https://doi.org/10.1097/00007632-199011010-00011'}, {'type': 'PubMed', 'value': '2267608', 'is_inner': True, 'url': 'https://pubmed.ncbi.nlm.nih.gov/2267608/'}]}
- Abumi K, Panjabi MM, Kramer KM, et al (1990) Biomechanical evaluation of lumbar spinal stability after graded facetectomies. Spine 15:1142–1147 - PubMed
-
- {'text': '', 'ref_index': 1, 'ids': [{'type': 'PubMed', 'value': '16381209', 'is_inner': True, 'url': 'https://pubmed.ncbi.nlm.nih.gov/16381209/'}]}
- Ames CP, Acosta FL Jr, Chamberlain RH, Larios AE, Crawford NR (2005) Biomechanical analysis of a newly designed bioabsorbable anterior cervical plate. Invited submission from the joint section meeting on disorders of the spine and peripheral nerves, March 2005. J Neurosurg Spine 3:465–470 - PubMed
-
- {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.1016/S0140-6736(99)01312-4', 'is_inner': False, 'url': 'https://doi.org/10.1016/s0140-6736(99)01312-4'}, {'type': 'PubMed', 'value': '10470716', 'is_inner': True, 'url': 'https://pubmed.ncbi.nlm.nih.gov/10470716/'}]}
- Andersson GB (1999) Epidemiological features of chronic low-back pain. Lancet 354:581–585 - PubMed
-
- {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.1097/00007632-200211010-00004', 'is_inner': False, 'url': 'https://doi.org/10.1097/00007632-200211010-00004'}, {'type': 'PubMed', 'value': '12438979', 'is_inner': True, 'url': 'https://pubmed.ncbi.nlm.nih.gov/12438979/'}]}
- Cunningham BW, Lewis SJ, Long J, et al (2002) Biomechanical evaluation of lumbosacral reconstruction techniques for spondylolisthesis: an in vitro porcine model. Spine 27:2321–2327 - PubMed
-
- {'text': '', 'ref_index': 1, 'ids': [{'type': 'PMC', 'value': 'PMC3611574', 'is_inner': False, 'url': 'https://pmc.ncbi.nlm.nih.gov/articles/PMC3611574/'}, {'type': 'PubMed', 'value': '12384732', 'is_inner': True, 'url': 'https://pubmed.ncbi.nlm.nih.gov/12384732/'}]}
- Cunningham BW, Lowery GL, Serhan HA, et al (2002) Total disc replacement arthroplasty using the AcroFlex lumbar disc: a non-human primate model. Eur Spine J 11(Suppl 2):S115–S123 - PMC - PubMed
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Medical