Estimating prevalence, false-positive rate, and false-negative rate with use of repeated testing when true responses are unknown
- PMID: 17924351
- PMCID: PMC2265647
- DOI: 10.1086/521582
Estimating prevalence, false-positive rate, and false-negative rate with use of repeated testing when true responses are unknown
Comment on
-
A comprehensive analysis of common copy-number variations in the human genome.Am J Hum Genet. 2007 Jan;80(1):91-104. doi: 10.1086/510560. Epub 2006 Dec 5. Am J Hum Genet. 2007. PMID: 17160897 Free PMC article.
Similar articles
-
Off Bayes: effect of verification bias on posterior probabilities calculated using Bayes' theorem.Med Decis Making. 1992 Jan-Mar;12(1):22-31. doi: 10.1177/0272989X9201200105. Med Decis Making. 1992. PMID: 1538629
-
Evaluation of diagnostic tests without gold standards.Stat Methods Med Res. 1998 Dec;7(4):354-70. doi: 10.1177/096228029800700404. Stat Methods Med Res. 1998. PMID: 9871952 Review.
-
Bayes theorem: Fully informed rational estimates of diagnostic probabilities.J Am Dent Assoc. 2010 Jun;141(6):658-9. J Am Dent Assoc. 2010. PMID: 20516096 No abstract available.
-
Nonparametric bayesian estimation of positive false discovery rates.Biometrics. 2007 Dec;63(4):1126-34. doi: 10.1111/j.1541-0420.2007.00819.x. Epub 2007 May 14. Biometrics. 2007. PMID: 17501943
-
Are most randomised trials in anaesthesia and critical care wrong? An analysis using Bayes' theorem.Anaesthesia. 2020 Oct;75(10):1386-1393. doi: 10.1111/anae.15029. Epub 2020 Apr 7. Anaesthesia. 2020. PMID: 32255517 Review.
References
-
- Dawid AP, Skene AM (1979) Maximum likelihood estimation of observer error-rates using the EM algorithm. Appl Statist 28:20–2810.2307/2346806 - DOI
-
- Joseph L, Gyorkos TW, Coupal L (1995) Bayesian estimation of disease prevalence and the parameters of diagnostic tests in the absence of a gold standard. Am J Epidemiol 141:263–272 - PubMed
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources