Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2008 Feb;63(2):174-83.
doi: 10.1002/ana.21240.

Multiple sclerosis and Alzheimer's disease

Affiliations

Multiple sclerosis and Alzheimer's disease

Assunta Dal Bianco et al. Ann Neurol. 2008 Feb.

Abstract

Objective: Chronic inflammation with microglia activation is thought to play a major role in the formation or clearance of Alzheimer's disease (AD) lesions, as well as in the induction of demyelination in multiple sclerosis (MS). In MS, the cortex is severely affected by chronic, long-lasting inflammation, microglia activation, and demyelination. To what extent chronic inflammation in the cortex of MS patients influences the development of AD lesions is so far unresolved.

Methods: The study was performed on autopsy tissue of 45 MS cases, 9 AD cases, and 15 control subjects. We analyzed lymphocyte and plasma cell infiltration in relation to microglia activation, to the presence of beta-amyloid plaques and (AT8+) neurofibrillary tangles, and to myelin pathology.

Results: Profound microglia activation, determined by a broad spectrum of markers, was found in both MS and AD cortices, and the patterns of microglia activation were closely similar. Microglia activation in MS cortex, in contrast with that in AD and control cortex, correlated with lymphocyte and plasma-cell infiltrates in the meninges. MS cases older than 64 years experienced development of AD pathology in comparable incidence as seen in the course of normal aging. The density of beta-amyloid plaques and neurofibrillary tangles did not differ between demyelinated and nondemyelinated cortical areas.

Conclusions: Our data suggest that microglia activation in the MS cortex alone has little or no influence on the development of cortical AD pathology.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources