Bilateral activity-dependent interactions in the developing corticospinal system
- PMID: 17928450
- PMCID: PMC2740658
- DOI: 10.1523/JNEUROSCI.2814-07.2007
Bilateral activity-dependent interactions in the developing corticospinal system
Abstract
Activity-dependent competition between the corticospinal (CS) systems in each hemisphere drives postnatal development of motor skills and stable CS tract connections with contralateral spinal motor circuits. Unilateral restriction of motor cortex (M1) activity during an early postnatal critical period impairs contralateral visually guided movements later in development and in maturity. Silenced M1 develops aberrant connections with the contralateral spinal cord whereas the initially active M1, in the other hemisphere, develops bilateral connections. In this study, we determined whether the aberrant pattern of CS tract terminations and motor impairments produced by early postnatal M1 activity restriction could be abrogated by reducing activity-dependent synaptic competition from the initially active M1 later in development. We first inactivated M1 unilaterally between postnatal weeks 5-7. We next inactivated M1 on the other side from weeks 7-11 (alternate inactivation), to reduce the competitive advantage that this side may have over the initially inactivated side. Alternate inactivation redirected aberrant contralateral CS tract terminations from the initially silenced M1 to their normal spinal territories and reduced the density of aberrant ipsilateral terminations from the initially active side. Normal movement endpoint control during visually guided locomotion was fully restored. This reorganization of CS terminals reveals an unsuspected late plasticity after the critical period for establishing the pattern of CS terminations in the spinal cord. Our findings show that robust bilateral interactions between the developing CS systems on each side are important for achieving balance between contralateral and ipsilateral CS tract connections and visuomotor control.
Figures






Similar articles
-
Pyramidal tract stimulation restores normal corticospinal tract connections and visuomotor skill after early postnatal motor cortex activity blockade.J Neurosci. 2008 Jul 16;28(29):7426-34. doi: 10.1523/JNEUROSCI.1078-08.2008. J Neurosci. 2008. PMID: 18632946 Free PMC article.
-
Motor Cortex Activity Organizes the Developing Rubrospinal System.J Neurosci. 2015 Sep 30;35(39):13363-74. doi: 10.1523/JNEUROSCI.1719-15.2015. J Neurosci. 2015. PMID: 26424884 Free PMC article.
-
Activity-dependent plasticity improves M1 motor representation and corticospinal tract connectivity.J Neurophysiol. 2009 Mar;101(3):1283-93. doi: 10.1152/jn.91026.2008. Epub 2008 Dec 17. J Neurophysiol. 2009. PMID: 19091920 Free PMC article.
-
Activity- and use-dependent plasticity of the developing corticospinal system.Neurosci Biobehav Rev. 2007;31(8):1125-35. doi: 10.1016/j.neubiorev.2007.04.017. Epub 2007 May 17. Neurosci Biobehav Rev. 2007. PMID: 17599407 Free PMC article. Review.
-
The corticospinal system: from development to motor control.Neuroscientist. 2005 Apr;11(2):161-73. doi: 10.1177/1073858404270843. Neuroscientist. 2005. PMID: 15746384 Review.
Cited by
-
Activity-dependent codevelopment of the corticospinal system and target interneurons in the cervical spinal cord.J Neurosci. 2009 Jul 8;29(27):8816-27. doi: 10.1523/JNEUROSCI.0735-09.2009. J Neurosci. 2009. PMID: 19587289 Free PMC article.
-
Dendritic spine dysgenesis contributes to hyperreflexia after spinal cord injury.J Neurophysiol. 2015 Mar 1;113(5):1598-615. doi: 10.1152/jn.00566.2014. Epub 2014 Dec 10. J Neurophysiol. 2015. PMID: 25505110 Free PMC article.
-
Effect of sensory and motor connectivity on hand function in pediatric hemiplegia.Ann Neurol. 2017 Nov;82(5):766-780. doi: 10.1002/ana.25080. Epub 2017 Nov 1. Ann Neurol. 2017. PMID: 29034483 Free PMC article.
-
Power training alters somatosensory cortical activity of youth with cerebral palsy.Ann Clin Transl Neurol. 2022 May;9(5):659-668. doi: 10.1002/acn3.51545. Epub 2022 Mar 17. Ann Clin Transl Neurol. 2022. PMID: 35297546 Free PMC article.
-
Motor System Reorganization After Stroke: Stimulating and Training Toward Perfection.Physiology (Bethesda). 2015 Sep;30(5):358-70. doi: 10.1152/physiol.00014.2015. Physiology (Bethesda). 2015. PMID: 26328881 Free PMC article. Review.
References
-
- Alisky JM, Swink TD, Tolbert DL. The postnatal spatial and temporal development of corticospinal projections in cats. Exp Brain Res. 1992;88:265–276. - PubMed
-
- Bouza H, Rutherford M, Acolet D, Pennock JM, Dubowitz LM. Evolution of early hemiplegic signs in full-term infants with unilateral brain lesions in the neonatal period: a prospective study. Neuropediatrics. 1994;25:201–207. - PubMed
-
- Carr LJ, Harrison LM, Evans AL, Stephens JA. Patterns of central motor reorganization in hemiplegic cerebral palsy. Brain. 1993;116:1223–1247. - PubMed
-
- Chakrabarty S, Martin JH. Postnatal development of the motor representation in primary motor cortex. J Neurophysiol. 2000;84:2582–2594. - PubMed
-
- Chakrabarty S, Friel K, Martin JH. Changes in M1 motor maps reflect plasticity of spinal terminations. Soc Neurosci Abstr. 2007;33:132–24.
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources