Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2008 Jan;14(1):66-75.
doi: 10.1002/psc.913.

Self-assembly of the octapeptide lanreotide and lanreotide-based derivatives: the role of the aromatic residues

Affiliations

Self-assembly of the octapeptide lanreotide and lanreotide-based derivatives: the role of the aromatic residues

Anjali Pandit et al. J Pept Sci. 2008 Jan.

Abstract

We investigated the spectroscopic properties of the aromatic residues in a set of octapeptides with various self-assembly properties. These octapeptides are based on lanreotide, a cyclic peptide analogue of somatostatin-14 that spontaneously self-assembles into very long and monodisperse hollow nanotubes. A previous study on these lanreotide-based derivatives has shown that the disulfide bridge, the peptide hairpin conformation and the aromatic residues are involved in the self-assembly process and that modification of these properties either decreases the self-assembly propensity or modifies the molecular packing resulting in different self-assembled architectures. In this study we probed the local environment of the aromatic residues, naphthyl-alanine, tryptophan and tyrosine, by Raman and fluorescence spectroscopy, comparing nonassembled peptides at low concentrations with the self-assembled ones at high concentrations. As expected, the spectroscopic characteristics of the aromatic residues were found to be sensitive to the peptide-peptide interactions. Among the most remarkable features we could record a very unusual Raman spectrum for the tyrosine of lanreotide in relation to its propensity to form H-bonds within the assemblies. In Lanreotide nanotubes, and also in the supramolecular architectures formed by its derivatives, the tryptophan side chain is water-exposed. Finally, the low fluorescence polarization of the peptide aggregates suggests that fluorescence energy transfer occurs within the nanotubes.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources