Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2007;49(2 Suppl):245-6.

Performance and energy expenditure in cold environments

Affiliations
  • PMID: 17929641
Review

Performance and energy expenditure in cold environments

Hannu Rintamäki. Alaska Med. 2007.

Abstract

This paper reviews the associations between physical performance and energy expenditure in cold environments. The basic question in cold is how to maintain adequate thermal insulation without marked cold or heat strain and with minimal impairment on physical performance. 24-hour energy expenditure is increased by 105-156 kJ when ambient temperature decreases by 1 degrees C either due to increased clothing, lowered body temperatures or environmental conditions like snow, ice or darkness. Clothing and other protective garments decrease performance due to the weight, bulkiness and friction, and by covering body areas which are important for sensory functions. Each additional kg in clothing weight increases energy costs approximately by 3% and each additional layer by 4%. Increased energy costs are associated with a decrease in physical performance: the decrease is task specific, and roughly comparable to the changes in the energy costs. The decrement in performance can be minimized by decreasing clothing weight and bulkiness as well as the friction between the clothing layers as well as the number of clothing layers. Minimal friction is important in sites where large range of movements is expected like in trouser legs and sleeves of jackets.

PubMed Disclaimer

Similar articles

Cited by