Accuracy and convergence of the Wang-Landau sampling algorithm
- PMID: 17930168
- DOI: 10.1103/PhysRevE.76.026701
Accuracy and convergence of the Wang-Landau sampling algorithm
Abstract
We present estimations of the accuracy and convergence of the Wang-Landau algorithm. Both accuracy and the related length of the Monte Carlo run depend on the modification parameter f and the density of states. The analytical solution obtained for the two-level system was checked numerically on the two-dimensional Ising model. Although the two-level system is a very simple one, it appears that the proposed solution describes the generic features of the Wang-Landau algorithm. The estimations should prove useful in Monte Carlo calculations of protein folding, first-order transitions, and other systems with a rough energy landscape.
Similar articles
-
Improving the Wang-Landau algorithm for polymers and proteins.J Comput Chem. 2011 Apr 15;32(5):816-21. doi: 10.1002/jcc.21660. Epub 2010 Oct 12. J Comput Chem. 2011. PMID: 20941735
-
Incorporating configurational-bias Monte Carlo into the Wang-Landau algorithm for continuous molecular systems.J Chem Phys. 2012 Nov 28;137(20):204105. doi: 10.1063/1.4766354. J Chem Phys. 2012. PMID: 23205979
-
Performances of Wang-Landau algorithms for continuous systems.Phys Rev E Stat Nonlin Soft Matter Phys. 2006 May;73(5 Pt 2):056704. doi: 10.1103/PhysRevE.73.056704. Epub 2006 May 17. Phys Rev E Stat Nonlin Soft Matter Phys. 2006. PMID: 16803071
-
Statistical-temperature Monte Carlo and molecular dynamics algorithms.Phys Rev Lett. 2006 Aug 4;97(5):050601. doi: 10.1103/PhysRevLett.97.050601. Epub 2006 Aug 1. Phys Rev Lett. 2006. PMID: 17026089
-
Optimal modification factor and convergence of the Wang-Landau algorithm.Phys Rev E Stat Nonlin Soft Matter Phys. 2008 Oct;78(4 Pt 2):046705. doi: 10.1103/PhysRevE.78.046705. Epub 2008 Oct 20. Phys Rev E Stat Nonlin Soft Matter Phys. 2008. PMID: 18999559