Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2008 Jan;53(1):186-96.
doi: 10.1111/j.1365-313X.2007.03306.x. Epub 2007 Oct 10.

Variable-angle epifluorescence microscopy: a new way to look at protein dynamics in the plant cell cortex

Affiliations
Free article

Variable-angle epifluorescence microscopy: a new way to look at protein dynamics in the plant cell cortex

Catherine A Konopka et al. Plant J. 2008 Jan.
Free article

Abstract

Live-cell microscopy imaging of fluorescent-tagged fusion proteins is an essential tool for cell biologists. Total internal reflection fluorescence microscopy (TIRFM) has joined confocal microscopy as a complementary system for the imaging of cell surface protein dynamics in mammalian and yeast systems because of its high temporal and spatial resolution. Here we present an alternative to TIRFM, termed variable-angle epifluorescence microscopy (VAEM), for the visualization of protein dynamics at or near the plasma membrane of plant epidermal cells and root hairs in whole, intact seedlings that provides high-signal, low-background and near real-time imaging. VAEM uses highly oblique subcritical incident angles to decrease background fluorophore excitation. We discuss the utilities and advantages of VAEM for imaging of fluorescent fusion-tagged marker proteins in studying cortical cytoskeletal and membrane proteins. We believe that the application of VAEM will be an invaluable imaging tool for plant cell biologists.

PubMed Disclaimer

Publication types

LinkOut - more resources