Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Randomized Controlled Trial
. 2008 Jan 1;586(1):123-30.
doi: 10.1113/jphysiol.2007.146035. Epub 2007 Oct 11.

During hypoxic exercise some vasoconstriction is needed to match O2 delivery with O2 demand at the microcirculatory level

Affiliations
Randomized Controlled Trial

During hypoxic exercise some vasoconstriction is needed to match O2 delivery with O2 demand at the microcirculatory level

Carsten Lundby et al. J Physiol. .

Abstract

To test the hypothesis that the increased sympathetic tonus elicited by chronic hypoxia is needed to match O(2) delivery with O(2) demand at the microvascular level eight male subjects were investigated at 4559 m altitude during maximal exercise with and without infusion of ATP (80 mug (kg body mass)(-1) min(-1)) into the right femoral artery. Compared to sea level peak leg vascular conductance was reduced by 39% at altitude. However, the infusion of ATP at altitude did not alter femoral vein blood flow (7.6 +/- 1.0 versus 7.9 +/- 1.0 l min(-1)) and femoral arterial oxygen delivery (1.2 +/- 0.2 versus 1.3 +/- 0.2 l min(-1); control and ATP, respectively). Despite the fact that with ATP mean arterial blood pressure decreased (106.9 +/- 14.2 versus 83.3 +/- 16.0 mmHg, P < 0.05), peak cardiac output remained unchanged. Arterial oxygen extraction fraction was reduced from 85.9 +/- 5.3 to 72.0 +/- 10.2% (P < 0.05), and the corresponding venous O(2) content was increased from 25.5 +/- 10.0 to 46.3 +/- 18.5 ml l(-1) (control and ATP, respectively, P < 0.05). With ATP, leg arterial-venous O(2) difference was decreased (P < 0.05) from 139.3 +/- 9.0 to 116.9 +/- 8.4(-1) and leg .VO(2max) was 20% lower compared to the control trial (1.1 +/- 0.2 versus 0.9 +/- 0.1 l min(-1)) (P = 0.069). In summary, at altitude, some degree of vasoconstriction is needed to match O(2) delivery with O(2) demand. Peak cardiac output at altitude is not limited by excessive mean arterial pressure. Exercising leg .VO(2peak) is not limited by restricted vasodilatation in the altitude-acclimatized human.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Peak exercise cardiac output (A, l min−1), leg blood flow (B, l min−1), mean blood pressure (C, mmHg), leg vascular conductance (D, ml−1 min−1 mmHg−1), leg O2 delivery (E, l min−1), fractional O2 extraction (F,%), leg formula image (G, l min−1), and pulmonary formula image (H, l min−1) at sea level and at altitude with and without ATP infusion. Values are mean ± s.d., *P < 0.05 compared to control situation.

Similar articles

Cited by

References

    1. Amann M, Eldridge MW, Lovering AT, Stickland MK, Pegelow DF, Dempsey JA. Arterial oxygenation influences central motor output and exercise performance via effects on peripheral locomotor muscle fatigue in humans. J Physiol. 2006;575:937–952. - PMC - PubMed
    1. Amann M, Romer LM, Subudhi AW, Pegelow DF, Dempsey JA. Severity of arterial hypoxaemia affects the relative contributions of peripheral muscle fatigue to exercise performance in healthy humans. J Physiol. 2007;581:389–403. - PMC - PubMed
    1. Andersen P, Saltin B. Maximal perfusion of skeletal muscle in man. J Physiol. 1985;366:233–249. - PMC - PubMed
    1. Boushel R, Calbet JAL, Radegran G, Sondergaard H, Wagner PD, Saltin B. Parasympathetic neural activity accounts for the lowering of exercise heart rate at high altitude. Circulation. 2001;104:1785–1791. - PubMed
    1. Calbet JAL. Chronic hypoxia increases blood pressure and noradrenaline spillover in healthy humans. J Physiol. 2003;551:379–386. - PMC - PubMed

Publication types

MeSH terms