Physiological and transcriptional responses of Saccharomyces cerevisiae to zinc limitation in chemostat cultures
- PMID: 17933919
- PMCID: PMC2168061
- DOI: 10.1128/AEM.01445-07
Physiological and transcriptional responses of Saccharomyces cerevisiae to zinc limitation in chemostat cultures
Abstract
Transcriptional responses of the yeast Saccharomyces cerevisiae to Zn availability were investigated at a fixed specific growth rate under limiting and abundant Zn concentrations in chemostat culture. To investigate the context dependency of this transcriptional response and eliminate growth rate-dependent variations in transcription, yeast was grown under several chemostat regimens, resulting in various carbon (glucose), nitrogen (ammonium), zinc, and oxygen supplies. A robust set of genes that responded consistently to Zn limitation was identified, and the set enabled the definition of the Zn-specific Zap1p regulon, comprised of 26 genes and characterized by a broader zinc-responsive element consensus (MHHAACCBYNMRGGT) than so far described. Most surprising was the Zn-dependent regulation of genes involved in storage carbohydrate metabolism. Their concerted down-regulation was physiologically relevant as revealed by a substantial decrease in glycogen and trehalose cellular content under Zn limitation. An unexpectedly large number of genes were synergistically or antagonistically regulated by oxygen and Zn availability. This combinatorial regulation suggested a more prominent involvement of Zn in mitochondrial biogenesis and function than hitherto identified.
Figures
References
-
- Abbott, D. A., T. A. Knijnenburg, L. M. de Poorter, M. J. Reinders, J. T. Pronk, and A. J. van Maris. 2007. Generic and specific transcriptional responses to different weak organic acids in anaerobic chemostat cultures of Saccharomyces cerevisiae. FEMS Yeast Res. 7:819-833. - PubMed
-
- Bailey, T. L., and C. Elkan. 1994. Fitting a mixture model by expectation maximization to discover motifs in biopolymers. Proc. Int. Conf. Intell. Syst. Mol. Biol. 2:28-36. - PubMed
-
- Barros, M. H., A. Johnson, and A. Tzagoloff. 2004. COX23, a homologue of COX17, is required for cytochrome oxidase assembly. J. Biol. Chem. 279:31943-31947. - PubMed
-
- Berg, J. M., and Y. Shi. 1996. The galvanization of biology: a growing appreciation for the roles of zinc. Science 271:1081-1085. - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Molecular Biology Databases
