Androgen receptor variants and prostate cancer in humanized AR mice
- PMID: 17936615
- PMCID: PMC2271069
- DOI: 10.1016/j.jsbmb.2007.09.002
Androgen receptor variants and prostate cancer in humanized AR mice
Abstract
Androgen, acting via the androgen receptor (AR), is central to male development, differentiation and hormone-dependent diseases such as prostate cancer. AR is actively involved in the initiation of prostate cancer, the transition to androgen independence, and many mechanisms of resistance to therapy. To examine genetic variation of AR in cancer, we created mice by germ-line gene targeting in which human AR sequence replaces that of the mouse. Since shorter length of a polymorphic N-terminal glutamine (Q) tract has been linked to prostate cancer risk, we introduced alleles with 12, 21 or 48 Qs to test this association. The three "humanized" AR mouse strains (h/mAR) are normal physiologically, as well as by cellular and molecular criteria, although slight differences are detected in AR target gene expression, correlating inversely with Q tract length. However, distinct allele-dependent differences in tumorigenesis are evident when these mice are crossed to a transgenic prostate cancer model. Remarkably, Q tract variation also differentially impacts disease progression following androgen depletion. This finding emphasizes the importance of AR function in androgen-independent as well as androgen-dependent disease. These mice provide a novel genetic paradigm in which to dissect opposing functions of AR in tumor suppression versus oncogenesis.
Figures




References
-
- Hayward SW, Cunha GR, Dahiya R. Normal development and carcinogenesis of the prostate. Ann NY Acad Sci. 1996;784:50–62. - PubMed
-
- Irvine RA, Yu MC, Ross RK, Coetzee GA. The CAG and GGC microsatellites of the androgen receptor gene are in linkage disequilibrium in men with prostate cancer. Cancer Res. 1995;55:1937–1940. - PubMed
-
- Chen CD, Welsbie DS, Tran C, Baek SH, Chen R, Vessella R, Rosenfeld MG, Sawyers CI. Molecular determinants of resistance to antiandrogen therapy. Nature Med. 2004;10:33–39. - PubMed
-
- Roy-Burman P, Tindall DJ, Robins DM, Greenberg NM, Hendrix MJC, Moghla S, Getzenberg RH, Isaacs JT, Pienta KJ. Androgens and prostate cancer: are the descriptors valid? Cancer Biol Ther. 2005;4:4–5. - PubMed
-
- Buchanan G, Greenberg NM, Scher HI, Harris JM, Marshall VR, Tilley WD. Collocation of androgen receptor gene mutations in prostate cancer. Clin Cancer Res. 2001;7:1273–1281. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Medical
Molecular Biology Databases
Research Materials