Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2008 Mar;45(5):1385-97.
doi: 10.1016/j.molimm.2007.09.004. Epub 2007 Oct 22.

Bovine TLR2 and TLR4 properly transduce signals from Staphylococcus aureus and E. coli, but S. aureus fails to both activate NF-kappaB in mammary epithelial cells and to quickly induce TNFalpha and interleukin-8 (CXCL8) expression in the udder

Affiliations

Bovine TLR2 and TLR4 properly transduce signals from Staphylococcus aureus and E. coli, but S. aureus fails to both activate NF-kappaB in mammary epithelial cells and to quickly induce TNFalpha and interleukin-8 (CXCL8) expression in the udder

Wei Yang et al. Mol Immunol. 2008 Mar.

Abstract

Staphylococcus aureus, but not E. coli pathogens frequently cause subclinical, chronic infections of the mammary gland. We examined here, if inadequate activation of the bovine TLR2 and TLR4 pathogen receptors by ligands derived from S. aureus pathogens might contribute to molecular mechanisms underpinning the escape strategies from mammary immune defence of this pathogen. We show that infections with live E. coli, but not S. aureus pathogens induce strongly IL-8 and TNFalpha gene expression in the udders. Yet, preparations of heat-killed bacteria from both pathogens activate equally well bovine TLR2 and TLR4 receptors to induce NF-kappaB activation, as shown in the HEK293 reconstitution system of TLR-signal transduction. LTA prepared from the S. aureus strain used to infect the cows activates the bovine TLR2 as strongly as the entire, heat-killed pathogen. Both pathogens induce in primary bovine mammary epithelial cells (pbMEC) IL-8 and TNFalpha gene expression, but S. aureus to less than 5% of the degree caused by E. coli. This impaired proinflammatory activation is paralleled by a complete lack of NF-kappaB activation in pbMEC by S. aureus or LTA. In contrast, E. coli and LPS activate strongly NF-kappaB in these cells. A large proportion of this activation is attributable to TLR-mediated signalling, since a dual transdominant negative DN-MyD88-DN-TRIF factor blocks >80% of the pathogen-related NF-kappaB activation in pbMEC. Our results prove that impaired binding of TLR-ligands from the pathogenic S. aureus strain are not the cause for the inadequate mammary immune response elicited by this pathogen. Rather, the pathogen causing subclinical mastitis impairs NF-kappaB activation in MEC thereby severely weakening the immune response in the udder.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources