Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007 Oct 1;6(19):2323-6.
doi: 10.4161/cc.6.19.4767. Epub 2007 Oct 20.

Regulation of RNA polymerase III transcription during mammalian cell growth

Affiliations

Regulation of RNA polymerase III transcription during mammalian cell growth

Sarah J Goodfellow et al. Cell Cycle. .

Abstract

RNA polymerase (pol) III manufactures transfer RNAs, 5S ribosomal RNA and several other untranslated RNA molecules that are essential components of the biosynthetic process. Accordingly, transcription by pol III is closely coupled to cellular growth rate. In mammals, stringent regulation of pol III output is achieved through the concerted action of various mechanisms that target the essential pol III-specific transcription factor TFIIIB. Positive regulators of growth, including ERK and c-Myc, directly bind and activate TFIIIB, thus increasing pol III output when growth demands are high. In contrast, TFIIIB is inactive when bound by RB. Growth stimulation leads to RB hyperphosphorylation, which alleviates this repression. These TFIIIB-directed mechanisms regulate pol III transcription in proliferating fibroblasts, and this is likely to contribute to the tight coordination of cell growth with division. Recent evidence indicates that these same pol III-regulatory mechanisms operate in terminally differentiated cells, where growth occurs in the absence of division, leading to hypertrophic enlargement. This cell division-independent regulation of pol III transcription, and hence biosynthetic capacity, is consistent with a direct involvement of these proteins in controlling cell growth. ERK-mediated induction of expression of the TFIIIB subunit Brf1 was identified as an additional mechanism for raising pol III output in terminally differentiated cardiomyocytes. Brf1 levels are limiting for pol III transcription in resting cardiomyocytes and so hypertrophic stimuli induce Brf1 expression as part of the pol III response in this context. The complex network of strategies that couple pol III transcription with cell growth suggest that stringent control of this system is of fundamental importance.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms

Substances

LinkOut - more resources