Network-based classification of breast cancer metastasis
- PMID: 17940530
- PMCID: PMC2063581
- DOI: 10.1038/msb4100180
Network-based classification of breast cancer metastasis
Abstract
Mapping the pathways that give rise to metastasis is one of the key challenges of breast cancer research. Recently, several large-scale studies have shed light on this problem through analysis of gene expression profiles to identify markers correlated with metastasis. Here, we apply a protein-network-based approach that identifies markers not as individual genes but as subnetworks extracted from protein interaction databases. The resulting subnetworks provide novel hypotheses for pathways involved in tumor progression. Although genes with known breast cancer mutations are typically not detected through analysis of differential expression, they play a central role in the protein network by interconnecting many differentially expressed genes. We find that the subnetwork markers are more reproducible than individual marker genes selected without network information, and that they achieve higher accuracy in the classification of metastatic versus non-metastatic tumors.
Figures



Comment in
-
Protein subnetwork markers improve prediction of cancer outcome.Mol Syst Biol. 2007;3:141. doi: 10.1038/msb4100183. Epub 2007 Oct 16. Mol Syst Biol. 2007. PMID: 17940531 Free PMC article. No abstract available.
Similar articles
-
Incorporating topological information for predicting robust cancer subnetwork markers in human protein-protein interaction network.BMC Bioinformatics. 2016 Oct 6;17(Suppl 13):351. doi: 10.1186/s12859-016-1224-1. BMC Bioinformatics. 2016. PMID: 27766944 Free PMC article.
-
A Steiner tree-based method for biomarker discovery and classification in breast cancer metastasis.BMC Genomics. 2012;13 Suppl 6(Suppl 6):S8. doi: 10.1186/1471-2164-13-S6-S8. Epub 2012 Oct 26. BMC Genomics. 2012. PMID: 23134806 Free PMC article.
-
Identification of diagnostic subnetwork markers for cancer in human protein-protein interaction network.BMC Bioinformatics. 2010 Oct 7;11 Suppl 6(Suppl 6):S8. doi: 10.1186/1471-2105-11-S6-S8. BMC Bioinformatics. 2010. PMID: 20946619 Free PMC article.
-
A mouse mammary gland involution mRNA signature identifies biological pathways potentially associated with breast cancer metastasis.J Mammary Gland Biol Neoplasia. 2009 Jun;14(2):99-116. doi: 10.1007/s10911-009-9120-1. Epub 2009 Apr 30. J Mammary Gland Biol Neoplasia. 2009. PMID: 19408105 Review.
-
miRNAs: Critical mediators of breast cancer metastatic programming.Exp Cell Res. 2021 Apr 1;401(1):112518. doi: 10.1016/j.yexcr.2021.112518. Epub 2021 Feb 17. Exp Cell Res. 2021. PMID: 33607102 Review.
Cited by
-
Systems Medicine 2.0: potential benefits of combining electronic health care records with systems science models.J Med Internet Res. 2015 Mar 23;17(3):e64. doi: 10.2196/jmir.3082. J Med Internet Res. 2015. PMID: 25831125 Free PMC article.
-
Mining the modular structure of protein interaction networks.PLoS One. 2015 Apr 9;10(4):e0122477. doi: 10.1371/journal.pone.0122477. eCollection 2015. PLoS One. 2015. PMID: 25856434 Free PMC article.
-
Network-based survival analysis reveals subnetwork signatures for predicting outcomes of ovarian cancer treatment.PLoS Comput Biol. 2013;9(3):e1002975. doi: 10.1371/journal.pcbi.1002975. Epub 2013 Mar 21. PLoS Comput Biol. 2013. PMID: 23555212 Free PMC article.
-
Cancer subtype discovery and biomarker identification via a new robust network clustering algorithm.PLoS One. 2013 Jun 17;8(6):e66256. doi: 10.1371/journal.pone.0066256. Print 2013. PLoS One. 2013. PMID: 23799085 Free PMC article.
-
Systems biology approach to studying proliferation-dependent prognostic subnetworks in breast cancer.Sci Rep. 2015 Aug 10;5:12981. doi: 10.1038/srep12981. Sci Rep. 2015. PMID: 26257336 Free PMC article.
References
-
- Agresti A (1990) Categorical Data Analysis. New York: Wiley
-
- Alfarano C, Andrade CE, Anthony K, Bahroos N, Bajec M, Bantoft K, Betel D, Bobechko B, Boutilier K, Burgess E, Buzadzija K, Cavero R, D'Abreo C, Donaldson I, Dorairajoo D, Dumontier MJ, Dumontier MR, Earles V, Farrall R, Feldman H et al.. (2005) The biomolecular interaction network database and related tools 2005 update. Nucleic Acids Res 33: D418–D424 - PMC - PubMed
-
- Alizadeh AA, Eisen MB, Davis RE, Ma C, Lossos IS, Rosenwald A, Boldrick JC, Sabet H, Tran T, Yu X, Powell JI, Yang L, Marti GE, Moore T, Hudson J Jr, Lu L, Lewis DB, Tibshirani R, Sherlock G, Chan WC et al.. (2000) Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature 403: 503–511 - PubMed
-
- Bachman KE, Argani P, Samuels Y, Silliman N, Ptak J, Szabo S, Konishi H, Karakas B, Blair BG, Lin C, Peters BA, Velculescu VE, Park BH (2004) The PIK3CA gene is mutated with high frequency in human breast cancers. Cancer Biol Ther 3: 772–775 - PubMed
-
- Ben-Dor A, Bruhn L, Friedman N, Nachman I, Schummer M, Yakhini Z (2000) Tissue classification with gene expression profiles. J Comput Biol 7: 559–583 - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical