Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2008 Jun 11;8(6):499-507.
doi: 10.1002/mabi.200700127.

Concurrent differentiation of marrow stromal cells to osteogenic and vasculogenic lineages

Affiliations

Concurrent differentiation of marrow stromal cells to osteogenic and vasculogenic lineages

James A Henderson et al. Macromol Biosci. .

Erratum in

  • Macromol Biosci. 2008 Jun 11;8(6) doi: 10.1002/mabi.200800093

Abstract

When rat bone marrow stromal (BMS) cells were seeded on aligned type I collagen scaffolds and cultured in osteogenic media, they underwent simultaneous maturation and differentiation into osteogenic and vascular cell lineages. In addition, these cells produced mineralized matricellular deposits. BMS cells were seeded in Petri dish or the collagen scaffold, cultured in osteogenic media for 3, 6, and 9 d and subsequently processed for immunohistochemical and cytochemical analysis. Immunolocalization of lineage-specific proteins were visualized using confocal microscopy and mRNA transcript analysis was performed by real-time quantitative polymerase chain reaction (RT-qPCR). The alkaline phosphatase activity and calcium content significantly increased over the observed period of time in an osteogenic medium. Sheets of abundant Pecam (CD31), Flk-1 (VEGFR-2), tomato lectin (TL/LEL), and alpha-smooth muscle actin (alpha-SMA) positive cells were observed in the collagen scaffolds. Nascent capillary-like vessels were also seen amidst the osteoblasts in osteogenic culture, augmenting the maturation and differentiation of BMS cells into osteoblasts. In our in vitro study, concurrent differentiation of BMS cells, a heterogeneous cell population with multilineage differentiation potential, to osteogenic and vascular lineages demonstrated that the substrates (three-dimensional (3-D), collagen type I, aligned fibrils) had a profound effect on guiding the differentiation pathway of BMS cells.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources